Free energy analysis along the stalk mechanism of membrane fusion†
Abstract
The free energy profile of the stalk model of membrane fusion has been calculated using coarse-grained molecular dynamics simulations. The proposed method guides the lipid configuration using a guiding wall potential to make the transition from two apposed membranes to a stalk and a fusion pore. The free energy profile is obtained with a thermodynamic integration scheme using the mean force working on the guiding wall as a response of the system. We applied the method to two apposed flat bilayers composed of dioleoyl phosphatidylethanolamine/dioleoyl phosphatidylcholine expanding over the simulation box under the periodic boundary conditions. The two transition states are identified as pre-stalk and pre-pore states. The free energy barrier for the latter is confirmed to be in good agreement with that estimated by the pulling method. The present method provides a practical way to calculate the free energy profile along the stalk mechanism.