
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ja

nu
ar

y 
20

15
. D

ow
nl

oa
de

d 
on

 9
/1

8/
20

24
 9

:5
0:

32
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Calculating the v
Department of Chemical Engineering, Del U

2628 BL Del, The Netherlands. E-mail: v.v

Cite this: RSC Adv., 2015, 5, 16042

Received 24th November 2014
Accepted 28th January 2015

DOI: 10.1039/c4ra15163a

www.rsc.org/advances

16042 | RSC Adv., 2015, 5, 16042–1604
olume of elongated bubbles and
droplets in microchannels from a top view image

Michiel Musterd, Volkert van Steijn,* Chris R. Kleijn and Michiel T. Kreutzer

We present a theoretical model to calculate the volume of non-wetting bubbles and droplets in segmented

microflows from given dimensions of the microchannel and measured lengths of bubbles and droplets.

Despite the importance of these volumes in interpreting experiments on reaction kinetics and transport

phenomena, an accurate model like the one we present here did not yet exist. The model has its

theoretical basis in the principle of interfacial energy minimization and is set up such that volume

calculations are possible for a wide variety of channel geometries. We successfully validated our model

with the 3D numerical energy minimization code SURFACE EVOLVER for the three most commonly used

channel geometries in the field of microfluidics and provide accurate user-friendly equations for these

geometries.
Fig. 1 (a) A non-wetting droplet of volume V and length L can be
described with a body of volume Vbd, length Lbd, and surface area Asurf,
and two caps of volume Vcap and length Lcap. (b) Cross-sectional view
showing half of the generalized channel geometry, which is charac-
terized by a height H, width W, top corner angle b, and rounded
bottom corner radius rc. (c) Rendered 3-D droplet shapes and corre-
Introduction

Many microuidics applications rely on multiphase ow, typi-
cally in the form of elongated droplets in a continuous phase.1,2

These droplets can for example be used as small reaction
chambers for the synthesis of advanced materials,3–7 the growth
and screening of cells,8–12 bacteria13–15 and enzymes,16 the study
of mass transfer rates,17–19 and even for DNA sequencing.20 For
quantitative analysis it is important to know the volume and
surface area of the droplets. This, however, presents a problem
as virtually all visualization is done with optical microscopes
that only provide two-dimensional top-view images of the
droplets, leaving their three-dimensional shape unknown.21,22 A
method to accurately determine the volume based on micro-
scope images is therefore of great use.

The simplest way to estimate the volume, V, of a conned,
non-wetting droplet such as the ones shown in Fig. 1 is to
describe its shape as a block that has the length, L, of the
droplet and the cross sectional area Ach of the channel, giving
V¼ AchL. For a rectangular channel, with widthW and height H,
this gives the estimate V¼HWL. Many researchers21–23 implicitly
use this simple estimate when using the dimensionless length
L/W as a proxy for the dimensionless volume V/HW2. A more
accurate estimation takes into account the rounded caps at the
front and back of the droplet and the fact that the droplet does
not invade the corners of the channels. To account for the latter,
the cross sectional shape of a non-wetting droplet in rectangular
channels is oen assumed to consist of two semi-circles with a
diameter H, connected by straight lines of length W � H, thus
replacing Ach by pH

2/4 + H(W� H) in the estimate of the droplet
niversity of Technology, Julianalaan 136,

ansteijn@tudel.nl

9

volume. This approximation, however, turns out to be accurate
only for shallow channels, where H � W. Moreover, this still
does not account for the rounded caps at the front and the back.
sponding 2-D top-views for the three most commonly used channel
geometries in the field of microfluidics: a trapezoidal channel (left), a
rectangular channel with rounded corners (middle), and a rectangular
channel with straight corners (right).

This journal is © The Royal Society of Chemistry 2015
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Although other approximations are reported,18 there is currently
no physically sound model to calculate the volume of droplets
from two-dimensional micrographs. Additionally, while most
previous work focused on channels with a rectangular cross
section, no relations have been developed and systematically
tested for non-rectangular microchannels like those obtained
by isotropic or crystallographic etching.

In this paper, we ll this gap by developing a theoretical
model that enables the reader to accurately predict volumes
of conned non-wetting droplets (contact angle of p) from
measured droplet lengths and known channel dimensions.
We set up the model such that this volume estimation is
possible for a wide variety of channel geometries by
considering the generalized channel shape shown in Fig. 1b.
This shape is characterized by a channel width W, height H,
top corner angle b, and rounded bottom corner with radius
rc. We develop solutions of the form V ¼ f(L, H, W, b, rc) for
this generalized channel shape and work out simplied
approximations for the three most commonly used micro-
channel geometries shown in Fig. 1c. For the reader who is
mainly interested in the nal result, we structured the paper
such that we directly provide these simplied approxima-
tions in eqn (1), followed by full solutions in Fig. 3. Aer
that, we present all the theoretical foundations and the
numerical validation. We base our model on quasi-static
droplet shapes, which is a valid approach for surface-
tension dominated ows where the lubricating lm around
droplets is much thinner than the height and width of the
channel, i.e. for sufficiently low values of the capillary
number Ca ( 10�3. Readers interested in ows at higher Ca
can use the simple extension of our model presented in the
discussion section.

The results of this study provide a valuable tool to precisely
quantify the volume of droplets from top-view images. This is
for example useful to further improve our understanding of
the physics of droplet ows, because physical models are
oen based on volumetric quantities such as ow rates and
volumes. From an application point of view, our model
enables the precise monitoring of chemical and biotechno-
logical processes in segmented microows. Mass transfer
rates in liquid–liquid extractions and gas–liquid dissolution
experiments benet for example from an accurate method to
determine droplet or bubble volumes and surface areas. This
information is also important for the design of non-spherical
particles for delivery purposes. Also in the eld of biotech-
nology, where the growth of microorganisms inside droplets
is tracked by counting the microorganisms in top-view
images, accurate knowledge on the volume of the droplets
enables the precise calculation of the cell concentration.
Lastly, we think that volume calculations from simple length
measurements might be useful for point-of-care devices,
where it is not possible to integrate expensive measurement
techniques like confocal microscopy and absorbance
imaging24 or include a collection chamber on the chip where
droplets can relax to a sphere such that their volume is easily
obtained from the measured diameter.
This journal is © The Royal Society of Chemistry 2015
Summary of the main results
Approximate solutions for common channel geometries,
V ¼ f(L, H, W)

As explained later, a good and simple calculation of the droplet
volume is

V ¼
"
HW � ð4� pÞ

�
2

H
þ 2

W

��2

� cH2

#�
L� W

3

�
(1)

where we have determined c for the three most commonly used
channel geometries shown in Fig. 1c: (i) channels with a trap-
ezoidal cross section obtained from anisotropic etching of
silicon along the h111i crystal plane (rc ¼ 0, b ¼ 54.7�),25 (ii)
rectangular channels with circular lower corners from isotropic
etching (b ¼ 90�, rc ¼ H), and (iii) rectangular channels with
sharp corners from anisotropic etching or so lithography (rc ¼
0, b ¼ 90�). Throughout this paper, we focus on channel
geometries with an aspect ratio H/W # 1, because such aspect
ratios are widely used in the eld of microuidics.

For the three geometries in Fig. 1c, we determined the
constant c by tting eqn (1) over the full range of channel aspect
ratios and droplet lengths studied in this work (0.1 # H/W # 1
and 2 # L/W # 9) against droplet volumes calculated with the
3D surface energy minimization of SURFACE EVOLVER.26 We
nd c ¼ 0.77, c ¼ 0.41, and c ¼ 0, respectively. For droplet
lengths L$ 3W, volumes calculated by eqn (1) are at least within
5% of the volumes calculated by SURFACE EVOLVER as shown
in Fig. 2, and the error is up to an order of magnitude smaller
than the error for the simple V ¼ AchL approximation. More
accurate solutions and solutions for the generalized channel
geometry in Fig. 1b, i.e. for other values of b or rc, are given
below.
Full solutions for generalized channel geometries, V ¼ f(L, H,
W, b, rc)

The recipe to calculate droplet volumes from measured droplet
lengths and known channel geometries is given in Fig. 3.
Depending on the channel geometry, different cross sectional
shapes are possible, resulting in different expressions for the
droplet volume. The different shapes can be classied based on
two questions: (Q1) “does the interface conform to the bottom
corners of the channel?” If the answer is “no”, the interface is
attened at the side walls and the remaining question is (Q2a)
“is the interface also attened at the bottom wall?” Yet, if the
answer to Q1 is “yes”, the interface is attened at the bottom
wall and the remaining question is (Q2b) “is the interface also
attened at the side walls?” This classication hence leaves four
possible interface shapes shown in Fig. 5, with the corre-
sponding expressions for the volume calculation in the four
panels of Fig. 3. Selecting which of the panels to use hence
starts with answering two questions. Using the corresponding
criteria at the top of Fig. 3, this is simply done by lling in the
known channel dimensions. Consider for example a channel
with a rectangular cross section with straight corners. Then the
answer to the rst question is “no”, because rc ¼ 0 while the
term on the le is always larger than zero. In fact, this term is
RSC Adv., 2015, 5, 16042–16049 | 16043
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Fig. 2 Comparison of the exact droplet volume VSE calculated with SURFACE EVOLVER, with V from eqn (1) (closed symbols) and V from the
simple estimate V ¼ AchL (open symbols). The proposed approximation, eqn (1), yields a volume estimate that is at least within 10% of the exact
droplet volumes, which is up to 1 order of magnitude better than the simple estimate V ¼ AchL. The minimum in some of the curves of eqn (1)
originates from the overestimation of the cap volume and the underestimation of the body volume. The contribution of the body increases with
L/W such that for short droplets the total error is positive and for long droplets negative and hence the minimum.
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the radius of curvature, rb, of the interface in the bottom corners
of the channel for an unconformed interface. Subsequently
calculating the radius of curvature, rt, of the interface in the top
corners of the channel, it is straightforward to show that for
Fig. 3 Recipe to calculate the volume of a droplet from its measured leng
top guide the reader to one of the four equation panels that contain all t
length using the equation at the bottom.

16044 | RSC Adv., 2015, 5, 16042–16049
rectangular channels the answer to Q2a is “yes” irrespective of
the values of H and W. This makes sense, because non-wetting
droplets in rectangular channels with straight corners do no ll
the corners and the curved parts of the interface in the corners
th, L, and the known channel dimensions (W,H, b, rc). The criteria at the
he equations needed to calculate the droplet volume from the droplet

This journal is © The Royal Society of Chemistry 2015
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are separated by thin at lms on the walls.27 Hence, the
expressions in panel (a) should be used to calculate the droplet
volume. Importantly, this panel is not exclusive to rectangular
channels with straight corners. It, for example, also applies to
trapezoidal channels that are sufficiently wide such that the
curved corners are separated by at lms. Note that the shapes
shown in the other panels are only a few examples of the
possible shapes belonging to these panels. Hence, it is recom-
mended to use the two criteria as a guide to select the appro-
priate panel for the volume calculation.
Model validation

We validate our theoretical model with the 3D numerical energy
minimization code SURFACE EVOLVER.26 We illustrate the
accuracy for the three most commonly used channel geometries
shown in Fig. 1c for a wide range of channel aspect ratios (0.1#

H/W # 1) and droplet lengths (2 # L/W # 9). For this entire
range, droplet volumes predicted by theory and found in
simulations agree within 5% as shown in Fig. 4. The largest
deviation is found for shallow channels and short droplets, i.e.
H/W ¼ 0.1 and L/W ¼ 2, whereas the difference reduces with
larger aspect ratios and droplet lengths to as little as 0.5% forH/
W $ 0.5 and L/W $ 6.
Uncertainty in calculated droplet volume due to experimental
inaccuracies

In this section, we briey explain how to calculate the uncer-
tainty in droplet volume, u(V), for a known uncertainty in the
droplet length u(L) and known uncertainties, u(W), u(H), u(b),
u(rc), in channel dimensions. Assuming that these uncertainties
are independent we can write

ðuðVÞÞ2 ¼
�
vV

vW
uðWÞ

�2

þ
�
vV

vH
uðHÞ

�2

þ
�
vV

vb
uðbÞ

�2

þ
�
vV

vrc
uðrcÞ

�2

þ
�
vV

vL
uðLÞ

�2

(2)
Fig. 4 Validation of the theoretical model in Fig. 3 was done by compar
SURFACE EVOLVER (circles) for the three most commonly used channe
V/W3 as a function of the non-dimensional droplet length L/W for a w
calculated by the model (lines) and SURFACE EVOLVER (circles) in the ins
our model agrees with the simulations within 5% (indicated by dashed l
droplets.

This journal is © The Royal Society of Chemistry 2015
Applying eqn (2) to the desired equation panel in Fig. 3 it is
then straightforward to calculate the uncertainty in V from
fabrication tolerances and expected errors in droplet length.

To illustrate the use of eqn (2) we work out a typical case for a
rectangular microchannel with straight corners with H¼ 50� 2
mm andW¼ 100� 2 mm and a droplet with L¼ 500� 10 mm, i.e.
relative errors of 4%, 2%, and 2%. Working out the derivatives
of V with respect to W, H, and L (not shown) and lling in the
numbers we nd V ¼ 2.21 � 0.11 nL or a relative error of 4.9%.

Full model

Our model describes the shape of quasi-statically moving
droplets that do not wet the channel walls. This quasi-static
approach is valid for droplets moving at speeds that are suffi-
ciently low to neglect droplet deformations due to viscous and
inertial forces. The dimensionless numbers expressing these
contributions relative to surface tension are the capillary
number, Ca, and the Weber number, We ¼ ReCa, with Re the
Reynolds number. For most microuidic applications, Ca, Re,
and hence We are small such that the quasi-static approach is
valid. More quantitatively, the calculations of Bretherton28

showed that deformations due to viscous forces are negligible
for Ca¼ mu/g < 5� 10�3, with m the viscosity of the carrier uid,
u the speed of the droplet, and g the interfacial tension. More
recently, Kreutzer et al.29 showed numerically that this boundary
can be put somewhat higher at Ca < 10�2. Additionally, Breth-
erton28 stated that inertial effects can be neglected for We ¼
ru2W/g < 1, with r the density of the carrier uid. The droplet
shapes calculated in Kreutzer et al.29 conrm that at We� 1, the
length of a droplet is appreciably different from the value at We
/ 0. As Re and Ca are both small in microuidic ows, the
condition We < 1 is met for most applications.

Besides droplet deformations due to viscous and inertial
forces, we also ignore deformations due to gravity. This is
justied, as gravity is generally small compared to surface
tension. More quantitatively, the ratio of these forces captured
by the Bond number, Bo ¼ DrH2g/g, is typically much smaller
than 0.1, where Dr is the density difference between the uids
and g is the gravitational acceleration.
ing the results from the model (lines) with simulations performed with
l geometries. The graphs show the non-dimensional droplet volume
ide range of channel aspect ratios, with some cross-sectional shapes
ets. The direct comparison of the error shown on the right shows that
ine) for droplets of length L $ 3W, with a reduction in error for larger

RSC Adv., 2015, 5, 16042–16049 | 16045
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Under the conditions that (i) surface tension forces are
much larger than viscous, inertial, and gravitational forces,
and (ii) droplets are surrounded by a thin lubricating lm
such that there is no direct contact between the droplets and
the walls (oen achieved by the use of surfactants or surface
treatment of the walls), droplets conned by the walls of a
channel take the shape for which the surface energy,
i.e. surface area, is minimum. This explains why the shape
only depends on the channel geometry and droplet volume,
and not on uid parameters. Although we use the word
“droplet” throughout this paper, our work hence is equally
valid for gas bubbles.

We now derive a relation between the volume and length of a
droplet by describing the shape of a droplet with two curved
caps connected by a body that is conned by the channel walls
as illustrated in Fig. 1a. We rst determine the volume of the
body based on energy minimization and then propose a
description of the caps.
Volume of the body

Considering the droplet shown in Fig. 1a, we dene its body as
the part that has sides of length Lbd parallel to the channel walls.
Along this length, the cross sectional droplet shape is constant
and can be described by one of the four possible shapes shown
in Fig. 5. Comparing the shapes in (a and c) with those in (b and
d), the important difference is the conformation of the interface
to the bottom corner of the channel. The shapes in Fig. 5b and d
do conform such that the radius of the interface at the bottom
Fig. 5 Geometric description of the four possible droplet shapes
inside the generalized channel geometry considered in this work.
These shapes can be categorized based on the two questions shown
at the top and side. All shapes are fully characterized once the radius of
curvature at the top, rt, is known, which is found through energy
minimization. The resulting expression can be found in the corre-
sponding panels (a)–(d) in Fig. 3. Note that we only present the left side
of the channels for display purposes.

16046 | RSC Adv., 2015, 5, 16042–16049
equals the radius of the rounded corner, i.e. rb ¼ rc. This leaves
the radius at the top, rt, as the only unknown in the description
of the cross-sectional droplet shape. By contrast, the bottom
interface in Fig. 5a and c does not take the shape of the channel.
Because the interface is now free at both the top and the bottom,
the curvatures are equal,27 i.e. rb ¼ rt. For all four cases, rt is thus
the only unknown.

The general approach to nd the cross-sectional shape, i.e. rt,
is to minimize the surface area of the entire body, Asurf, for a
xed body volume, Vbd ¼ AbdLbd, with Abd the cross-sectional
area

Abd ¼ 2
P

ai (3)

The surface area of the body, Asurf, simply equals the
circumference of the cross section, lbd ¼ 2

P
li, times the length

of the body, i.e. Asurf¼ 2Lbd
P

li. Using elementary geometry, it is
straightforward to nd expressions for the lengths li and the
areas ai for the four cases in Fig. 5. These can be subsequently
used to nd expressions for Abd, Vbd, and Asurf, which only
depend on the unknown radius rt. This radius is found by
minimizing the area Asurf for given Vbd, such that the cross-
sectional shape is known.

We now illustrate this general approach for the cross-
sectional shape shown in Fig. 5a. Using geometry to express
the lengths, li, and the areas, ai, in terms of the radii rt and rb
and the channel dimensions W, H, b, and rc, we nd

l1 ¼ W

2
� rt

tanðb=2Þ ; l2 ¼ ðp� bÞrt

l3 ¼ H

sin b
� rb tanðb=2Þ � rt

tanðb=2Þ

l4 ¼ brb; l5 ¼ W

2
� H

tan b
� rb tanðb=2Þ

(4)

and

a1 ¼ l5H; a2 ¼ p� b

2
rt

2; a3 ¼ l3rt

a4 ¼ b

2
rb

2; a5 ¼ rb � rt

2
l3

a6 ¼ l1 � l5

2

��
W

2
� l5

�
tan b� rb

cos b
� rt

�

a7 ¼ rtðl1 � l5Þ

(5)

where we neglected the thickness of the wetting lm between
the droplet and the wall under the assumption of quasi-static
motion.

Using rb ¼ rt for the case in Fig. 5a, we hence nd the
following expressions for the surface area

Asurf ¼ 2Lbd

�
H tan

b

2
� 4rt

sin b
þ prt þW

�
(6)

for the body area

Abd ¼
�
HW � H2

tan b
� 4rt

2

sin b
þ prt

2

�
(7)
This journal is © The Royal Society of Chemistry 2015
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Fig. 6 (a) Geometric reconstruction of the cap is done by extruding
the cross sectional shape of the body, Abd, along the length of the
cap Lcap, while decreasing the area quadratically according to A(y) ¼
Abd(1 � y2/Lcap

2). (b) Resulting droplet shape.
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and for the body volume

Vbd ¼ Lbd

�
HW � H2

tan b
� 4rt

2

sin b
þ prt

2

�
(8)

This volume should remain constant when we minimize the
surface area. This is simply done by substituting Vbd into Asurf
through Lbd, resulting in

Asurf ¼ 4Vbd

ðW þ prtÞsin b�H cos b� 4rt þH�
HW þ prt2

�
sin b�H2 cos b� 4rt2

(9)

Now minimizing Asurf with respect to the only unknown rt,
dAsurf/drt ¼ 0, we nd an expression for the radius rt in terms of
all known channel dimensions
rt ¼ Hð1� cos bÞ þW sin b

4� p sin b
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ ðH cos b�W sin bÞðHðcos bþ 2Þ � sin bðpH þW ÞÞp

4� p sin b
(10)
For a rectangular channel, b ¼ 90�, eqn (10) reduces to

rt ¼ H þW � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ ðp� 2ÞHW þW 2

p
4� p

; (11)

which is a well-known result.27 Knowing rt xes the entire cross-
sectional shape of the body in Fig. 5a. The volume of the body
can then be calculated using eqn (8) once the body length Lbd is
known, which we address shortly.

For the other three cases shown in Fig. 5b–d, the analysis is
similar. In short, one uses rb ¼ rc instead of rb ¼ rt to obtain the
resulting expressions for the case in Fig. 5b, while l5 ¼ 0 should
be used in eqn (4) and (5) for the case in Fig. 5c. The case in
Fig. 5d needs special attention. For the special case with rc ¼ H
shown in Fig. 5d, resulting expressions for rt and Abd are found
using rb ¼ rc and l3 ¼ 0. However, for the more generic case
where rc s H, nding the root of rt cannot be done analytically
and should be done using root nding. For all four cases, the
resulting expressions for rt and Abd are summarized in Fig. 3.
Volume of the caps

Calculating the shape and volume of the caps could in principle
be done using the same energy minimization approach. It,
however, involves solving the highly non-linear Young–Laplace
equation in 3D, such that it is not possible to obtain an
analytical expression for the generalized case. We therefore use
a much simpler, but accurate method to reconstruct the shape
of the caps. Although this description of the droplet caps is not
exact, it is a fair estimate as evidenced by the good match of the
droplet volume prediction and the SURFACE EVOLVER simu-
lation shown in Fig. 4. This reconstruction is illustrated in
Fig. 6a. We require that the cross-section of the droplet cap
continuously and smoothly connects to the body at y ¼ 0 and
monotonically decreases to A(y) ¼ 0 at y ¼ Lcap. Additionally, we
This journal is © The Royal Society of Chemistry 2015
require A(y) to reproduce a hemispherical cap when viewed
from top or bottom, as is commonly found in experiments. The
function A(y) ¼ Abd(1 � y2/Lcap

2) is the only choice that allows
this condition and the other ones. It may be noted that this
description results in a shape that looks elliptical fromwhatever
angle the cap is viewed in a 2D projection, thus closely
approximating the physically realistic shape as shown in
Fig. 6b. The volume of the cap can then simply be calculated as
the integral

Vcap ¼
ðLcap

0

Abd

 
1� y2

Lcap
2

!
dy ¼ 2

3
LcapAbd (12)

We hereby assume that the length of the cap equals half of
the body of the droplet, Wbd/2, thus matching the requirement
of a hemispherical cap when viewed from top or bottom. As
illustrated for the four shapes in Fig. 5, this width is simply
dened as the distance of the side of the droplet to the
centerline such that

Lcap ¼ Wbd/2 ¼ l1 + rt. (13)

With l1 and rt determined in the previous section, the cap
length can be determined and the resulting expressions are
summarized in Fig. 3.
Total droplet volume

The total droplet volume is just the sum of the body volume and
the volume of the caps

V ¼ 2Vcap þ Vbd ¼ 4

3
LcapAbd þ

�
L� 2Lcap

�
Abd (14)

where we expressed the length of the body in terms of the
measured droplet length, L, and the known cap length accord-
ing to Lbd ¼ L � 2Lcap. As mentioned before, the expressions for
Abd and Lcap are all summarized in Fig. 3. This gure hence is a
RSC Adv., 2015, 5, 16042–16049 | 16047
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concise summary of this paper and all that is needed to calcu-
late drop volumes from measured drop lengths.
Fig. 7 Effect of the capillary number on the difference in calculated
volume for moving and static droplets for a given droplet length of L/W
¼ 5 in rectangular channels with straight corners and an aspect ratio
H/W # 1.
Approximate solutions

Returning to the approximation of the droplet volume postu-
lated in eqn (1), we can now show the origin of this approxi-
mation. Substituting the approximation Lcap ¼ W/2 in eqn (14)
we obtain

V ¼ Abd

�
L� W

3

�
(15)

Considering a rectangular channel, the cross sectional area
equals Abd ¼HW� (4� p)rt

2. The unknown radius of curvature,
rt, can be found by matching the curvature, 1/rt, of the interface
near the corners to the curvature at the front of the droplet,
which approximately equals 2/H + 2/W. Using rt z (2/H + 2/W)�1

we nd

V ¼
"
HW � ð4� pÞ

�
2

H
þ 2

W

��2
#�

L� W

3

�
(16)

The trapezoidal and round corner channels are clearly far
from rectangular such that a correction term is needed. We
observe that a simple quadratic correction term, �cH2, for the
channel height is sufficient, while higher order terms inW and L
do not change the approximation signicantly and were le out
to keep the approximation as simple as possible. This yields the
volume approximation of eqn (1).
Discussion

We now address the validity and implications of two important
assumptions used in our model. The rst assumption is that the
droplet is sufficiently long such that it has a straight body. We
observed in SURFACE EVOLVER simulations that this
assumption breaks down for droplets shorter than L < 2W.
Despite this fact, our model is accurate within 12% for droplets
with a length W < L < 2W. Shorter droplets either take the shape
of a pancake or a sphere, such that their volume is easily
calculated using V ¼ pHL2/4 or V ¼ pL3/6 respectively.

The second assumption is that the lubricating lm around
non-wetting droplets is negligibly thin, which is valid for static
and slowly moving droplets.30 However, for faster moving
droplets the thickness of the lubricating lm, d, should be
accounted for. Wong et al.31 showed that this thickness is a
complex function of the distance to the droplet caps and
channel walls, but on average can be estimated as d/2W ¼
0.643rt/W(3Ca)2/3. The assumption in ourmodel that the droplet
is separated by an innitely thin lm can be easily modied to
take this nite thickness, d, into account: instead of usingH and
W, one should use W � 2d and H � 2d in the recipe of Fig. 3.
Although the right hand side of the expression for rt now
depends on rt itself, its value is simply found by solving the
equation iteratively. We note that using rt for a zero lm
thickness to calculate d without subsequently recalculating rt
16048 | RSC Adv., 2015, 5, 16042–16049
(valid for small values of Ca for which d � rt)32 results in a
maximum deviation of 2% in the prediction of the volume,
which might be sufficiently accurate for some applications. We
illustrate the inuence of the nite lm thickness for rectan-
gular channels with straight corners in Fig. 7. For a measured
droplet length of L¼ 5W, the graph shows the relative difference
between the volume of a moving droplet and a static droplet.
For the example considered here, the lm thickness can be
safely neglected for Ca < 10�3, because the 2.5% difference likely
falls within experimental error. For relatively large values of Ca,
the difference increases to a maximum of 12% for Ca ¼ 10�2.
For Ca > 10�3, the lm thickness should hence be taken into
account as proposed.
Concluding remarks

We have developed a theoretical model to compute the volume
of non-wetting bubbles and droplets in a microchannel based
on the principle of interfacial energy minimization. The only
input to the model is the geometry of the microchannel and the
length of the droplet, which can be determined easily from top-
or bottom view micrographs. Our model has been validated by
comparison with three-dimensional energy minimization
calculations using SURFACE EVOLVER. We have illustrated the
good agreement between theory and calculations for three most
commonly used channel geometries in the eld of micro-
uidics: a rectangular channel, an isotropically etched channel,
and a crystallographically etched channel. We expect that the
simple theoretical model will be useful for the droplet micro-
uidics community and aids quantitative analysis and design of
droplet microows.
Acknowledgements

We thank Bernhard Righolt for insightful discussions on the
geometric calculations. This research was carried out within the
framework of the ISPT project HESTRE.
References

1 S.-Y. Teh, R. Lin, L.-H. Hung and A. Lee, Lab Chip, 2008, 8,
198–220.
This journal is © The Royal Society of Chemistry 2015

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/C4RA15163A


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ja

nu
ar

y 
20

15
. D

ow
nl

oa
de

d 
on

 9
/1

8/
20

24
 9

:5
0:

32
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
2 C. Baroud, F. Gallaire and R. Dangla, Lab Chip, 2010, 10,
2032–2045.

3 V. Sebastian Cabeza, S. Kuhn, A. A. Kulkarni and
K. F. Jensen, Langmuir, 2012, 28, 7007–7013.

4 M. T. Rahman, P. G. Krishnamurthy, P. Parthiban, A. Jain,
C. P. Park, D.-P. Kim and S. A. Khan, RSC Adv., 2013, 3,
2897–2900.

5 I. Lignos, L. Protesescu, S. Stavrakis, L. Piveteau, M. J. Speirs,
M. A. Loi, M. V. Kovalenko and A. J. deMello, Chem. Mater.,
2014, 26, 2975–2982.

6 T. Nisisako and T. Torii, Adv. Mater., 2007, 19, 1489–1493.
7 D. Dendukuri, K. Tsoi, T. A. Hatton and P. S. Doyle,
Langmuir, 2005, 21, 2113–2116.

8 R. R. Pompano, W. Liu, W. Du and R. F. Ismagilov, Annu. Rev.
Anal. Chem., 2011, 4, 59–81.

9 A. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner,
C. Abell, F. Hollfelder and W. Huck, Angew. Chem., 2010,
49, 5846–5868.

10 J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat,
J.-C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths and
D. A. Weitz, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 4004–
4009.

11 M. T. Guo, A. Rotem, J. A. Heyman and D. A. Weitz, Lab Chip,
2012, 12, 2146–2155.

12 B. L. Wang, A. Ghaderi, H. Zhou, J. Agresti, D. A. Weitz,
G. R. Fink and G. Stephanopoulos, Nat. Biotechnol., 2014,
32, 473–478.

13 S. Jakiela, T. S. Kaminski, O. Cybulski, D. B. Weibel and
P. Garstecki, Angew. Chem., 2013, 125, 9076–9079.

14 K. Leung, H. Zahn, T. Leaver, K. M. Konwar, N. W. Hanson,
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