Issue 94, 2014

Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water

Abstract

Selective oxidation of C6 hydroxyls to carboxyls through 2,2,6,6,-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, where the oxidizing species (TEMPO+) is generated by cooxidants, such as NaBrO, NaClO or NaClO2, has become a popular way to modify the surfaces of nanocellulose fibrils in aqueous solutions. Employing highly crystalline nanocellulose from Cladophora sp. algae we demonstrate that the same degree of oxidation (D.O.) can be achieved within approximately the same time by replacing the cooxidants with electrogeneration of TEMPO+ in a bulk electrolysis setup. The D.O. is controlled by the oxidation time and the maximum D.O. achieved (D.O. 9.8%, 0.60 mmol g−1 of carboxylic acids and 0 mmol g−1 aldehydes) corresponds to complete oxidation of the surface-confined C6. This shows that TEMPO+ is not sterically hindered from completely oxidizing the fibril surface of Cladophora nanocellulose, in contrast to earlier hypotheses that were based on results with wood-derived nanocellulose. The oxidation does not significantly affect the morphology, the specific surface area (>115 m2 g−1) or the pore characteristics of the water-insoluble fibrous particles that were obtained after drying, but depolymerization corresponding to ∼20% was observed. For extensive oxidation times, the product recovery of water-insoluble fibrils decreased significantly while significant amounts of charge passed through the system. This could indicate that the oxidation proceeds beyond the fibril surface, in contrast to the current view that TEMPO-mediated oxidation is confined only to the surface.

Graphical abstract: Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2014
Accepted
10 Oct 2014
First published
13 Oct 2014

RSC Adv., 2014,4, 52289-52298

Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water

D. O. Carlsson, J. Lindh, L. Nyholm, M. Strømme and A. Mihranyan, RSC Adv., 2014, 4, 52289 DOI: 10.1039/C4RA11182F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements