Synthesis and characterization of TiO2 nanotube supported Rh-nanoparticle catalysts for regioselective hydroformylation of vinyl acetate†
Abstract
Three procedures: the impregnation-borohydride reduction procedure, the impregnation-alcohol reduction procedure and the impregnation-photoreducing procedure, were utilized for preparing TiO2 nanotube supported rhodium nanoparticle catalysts, in which rhodium acetate was used as a rhodium source. Catalysts were characterized with TEM, ICP, XPS and XRD; their catalytic performances for hydroformylation of vinyl acetate were evaluated. Of these catalysts prepared by three different methods, the catalyst prepared by the impregnation-photoreducing procedure showed the highest catalytic activity under the same reaction conditions. The effects of pressure of syngas, solvents, temperature, Rh content and reaction time on the hydroformylation were examined in detail. Under the optimized reaction conditions, the conversion of vinyl acetate can reach at 100%; the chemoselectivity for aldehydes was 74.70% and the regioselectivity for the branched aldehyde was 95%.