Issue 65, 2014

Development of novel inorganic–organic hybrid nanocomposites as a recyclable adsorbent and catalyst

Abstract

Development of novel inorganic–organic hybrid nanocomposites based on the immobilization of nanoparticles on tubular clay minerals has received a lot of attention not only because of their abundance in nature and their low cost but also because they can be utilized as catalysts, as a nanoreactor to host reactants for nanosynthesis, and for the controlled release of bio-molecules. Halloysite nanotube (HNT), an important inorganic material, possesses a hollow tubular structure. Here, we demonstrate a method for the selective modification of the outer surface of the HNTs with an organosilane to make HNTs a novel solid-phase adsorbent to extract heavy metal ions from aqueous solutions. The new functionalized HNTs exhibit excellent selectivity for the extraction of mercury which shows monolayer molecular adsorption over HNTs and the adsorption of Hg(II) follows pseudo-second order kinetics. Following the surface modification of HNTs, a two-step procedure has been developed to fabricate metal/HNT nanocomposites. With the commercially available reagents, monodispersed Au, Ag, and AuAg alloy nanoparticles (NPs) were synthesized in a hot organoamine solvent under a nitrogen atmosphere using a standard air-free technique. Metal/HNT nanocomposites are obtained by the immobilization of preformed metal NPs on HNT surfaces where the organosilane behaves as a linker molecule. Finally, the catalytic activity of these nanocomposites was determined and their use was compared in the production of anthranilic acid.

Graphical abstract: Development of novel inorganic–organic hybrid nanocomposites as a recyclable adsorbent and catalyst

Supplementary files

Article information

Article type
Paper
Submitted
23 Apr 2014
Accepted
21 Jul 2014
First published
21 Jul 2014

RSC Adv., 2014,4, 34435-34442

Development of novel inorganic–organic hybrid nanocomposites as a recyclable adsorbent and catalyst

S. Jana and S. Das, RSC Adv., 2014, 4, 34435 DOI: 10.1039/C4RA03684K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements