Issue 45, 2014

Improved microwave absorption in lightweight resin-based carbon foam by decorating with magnetic and dielectric nanoparticles

Abstract

Carbon foams (CFoams) are sponge-like high performance lightweight engineering materials that possess excellent electrical and mechanical properties as well as thermal stability. CFoams possess bulk density in the range from 0.30 to 0.40 g cm−3 and open porosity of more than 70%. The CFoam consists of pore walls, i.e., ligaments, which are responsible for the conduction path and hence the electrical conductivity due to mobile charge carrier (delocalized π electron), are interconnected to each other. The high value of electrical conductivity causes the CFoam to act as an electromagnetic radiation reflector rather than an absorber; however, in certain applications, shielding materials must be able to absorb the maximum electromagnetic radiation. Therefore, to improve the absorptivity of electromagnetic radiation in lightweight CFoams, the CFoams are decorated by Fe3O4 and ZnO nanoparticles. It is observed that coating with Fe3O4 and Fe3O4–ZnO nanoparticles not only improved the absorption losses but also enhanced the compressive strength of CFoam by 100%. This modified CFoam demonstrated excellent shielding response in the frequency range from 8.2 to 12.4 GHz, in which the total shielding effectiveness (SE) was dominated by absorption losses. The total SE is −45.7 and −48.5 dB of Fe3O4 and Fe3O4–ZnO-coated CFoam, respectively, and it is governed by absorption losses of −34.3 dB and −41.5 dB, respectively. Moreover, the absorption losses increased by 236% in Fe3O4-coated CFoam and 281% in Fe3O4–ZnO-coated CFoam without much enhancement in the bulk density. This is due to the high level of magnetic and dielectric losses of nanoparticles with high surface area. Note that the absorption losses are 80% higher than any value reported for CFoam; thus, lightweight CFoam decorated with magnetic and dielectric nanoparticles is an excellent material for stealth technology.

Graphical abstract: Improved microwave absorption in lightweight resin-based carbon foam by decorating with magnetic and dielectric nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2014
Accepted
06 May 2014
First published
07 May 2014

RSC Adv., 2014,4, 23476-23484

Author version available

Improved microwave absorption in lightweight resin-based carbon foam by decorating with magnetic and dielectric nanoparticles

R. Kumar, A. P. Singh, M. Chand, R. P. Pant, R. K. Kotnala, S. K. Dhawan, R. B. Mathur and S. R. Dhakate, RSC Adv., 2014, 4, 23476 DOI: 10.1039/C4RA01731E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements