Issue 26, 2014

Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3–g-C3N4 composite under visible light irradiation

Abstract

Novel Z-scheme type MoO3–g-C3N4 composites photocatalysts were prepared with a simple mixing–calcination method, and evaluated for their photodegradation activities of methyl orange (MO). The optimized MoO3–g-C3N4 photocatalyst shows a good activity with a kinetic constant of 0.0177 min−1, 10.4 times higher than that of g-C3N4. Controlling various factors (MoO3–g-C3N4 amount, initial MO concentration, and pH value of MO solution) can lead to the enhancement of the photocatalytic activity of the composite. Only MoO3 and g-C3N4 are detected with X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) spectra. N2 adsorption and UV-vis diffuse reflectance spectroscopy (DRS) results suggest that the addition of MoO3 slightly affects the specific surface area and the photoabsorption performance. The transmission electron microscopy (TEM) image of MoO3–g-C3N4 indicates a close contact between MoO3 and g-C3N4, which is beneficial to interparticle electron transfer. The high photocatalytic activity of MoO3–g-C3N4 is mainly attributed to the synergetic effect of MoO3 and g-C3N4 in electron–hole pair separation via the charge migration between the two semiconductors. The charge transfer follows direct Z-scheme mechanism, which is proven by the reactive species trapping experiment and the ˙OH-trapping photoluminescence spectra.

Graphical abstract: Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3–g-C3N4 composite under visible light irradiation

Supplementary files

Article information

Article type
Paper
Submitted
23 Jan 2014
Accepted
04 Mar 2014
First published
04 Mar 2014

RSC Adv., 2014,4, 13610-13619

Author version available

Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3–g-C3N4 composite under visible light irradiation

Y. He, L. Zhang, X. Wang, Y. Wu, H. Lin, L. Zhao, W. Weng, H. Wan and M. Fan, RSC Adv., 2014, 4, 13610 DOI: 10.1039/C4RA00693C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements