Issue 7, 2014

Thermoresponsive poly(vinyl alcohol) derivatives: preparation, characterization and their capability of dispersing gold nanoparticles

Abstract

Three amino acid derivatives, GI, AI and VI resulted from the corresponding isobutyryl chloride modified Gly, Ala and Val, were each conjugated with some of the hydroxyl groups of poly(vinyl alcohol) (PVA) through a one-step esterification reaction, resulting in PVA-GI, PVA-AI and PVA-VI, respectively. FTIR and 1H NMR verified the successful conjugation of these amino-acid derivative units onto PVA. X-ray diffraction characterization demonstrated that the introduction of these units led to a decrease in the degree of crystallinity. Turbidity measurement showed that GI, AI and VI were all effective molecular units to make such PVA-derivatives thermoresponsive, and the phase transition temperature could be modulated in a wide range by varying the degree of substitution or altering the type of amino-acid derivative. The efficiency of these three molecular units to make PVA thermoresponsive was as follows: VI > AI ∼ GI. Dynamic light scattering (DLS) measurement demonstrated that these thermoresponsive PVA derivatives experienced a conformation transition from the loose coil to the compact and crumbled state, till the aggregated state was attained following the temperature increase. Such thermoresponsive PVA derivatives were good dispersing agents for colloidal gold nanoparticles (AuNPs) in water when enough polymers were used. A core–shell structure was proved by DLS and TEM measurements where the AuNP was covered by a thick organic shell formed by the thermoresponsive PVA derivatives. Turbidity measurement showed that the composites of such PVA derivatives and AuNPs were also thermoresponsive, and they had a little lower phase transition temperature than those of the corresponding neat thermoresponsive PVA derivatives. DLS measurement demonstrated that such thermoresponsive AuNP composites experienced a shell shrinkage and subsequent aggregation of nanoparticles during the temperature increase. Moreover, AuNPs stabilized by such thermoresponsive PVA derivatives showed better salt-resistance than those stabilized by neat PVAs.

Graphical abstract: Thermoresponsive poly(vinyl alcohol) derivatives: preparation, characterization and their capability of dispersing gold nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2013
Accepted
12 Dec 2013
First published
16 Dec 2013

Polym. Chem., 2014,5, 2417-2424

Thermoresponsive poly(vinyl alcohol) derivatives: preparation, characterization and their capability of dispersing gold nanoparticles

R. Wang, H. Liu, J. Tong and Y. Chen, Polym. Chem., 2014, 5, 2417 DOI: 10.1039/C3PY01388J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements