Synthesis and biological evaluation of dual action cyclo-RGD/SMAC mimetic conjugates targeting $\alpha_v\beta_3/\alpha_v\beta_5$ integrins and IAP proteins†

M. Mingozzi,†a L. Manzioni,†b D. Arosio,b A. Dal Corso,b M. Manzotti,a F. Innamorati,a L. Pignataro,a D. Lecis,c D. Delia,c P. Seneci*a and C. Gennari*a

The rational design, synthesis and in vitro biological evaluation of dual action conjugates 11–13, containing a tumour targeting, integrin $\alpha_v\beta_3/\alpha_v\beta_5$ ligand portion and a pro-apoptotic SMAC mimetic portion (cyclo-RGD/SMAC mimetic conjugates) are reported. The binding strength of the two separate units is generally maintained by these dual action conjugates. In particular, the connection between the separate units (anchor points on each unit; nature, length and stability of the linker) influences the activity of each portion against its molecular targets (integrins $\alpha_v\beta_3/\alpha_v\beta_5$ for cyclo-RGD, IAP proteins for SMAC mimetics). Each conjugate portion tolerates different substitutions while preserving the binding affinity for each target.

Introduction

In the pharmaceutical industry, inhibition of a molecular target sometimes leads to a bypass of the target itself by the diseased cells or organs (e.g. penicillins and resistance to beta-lactamases1). Thus, there is an increasing need for multi-targeted therapies.2

Multi-targeting may be achieved by administering a cocktail of active ingredients, and cocktails active against HIV are an example of clinical success.3 However, effective drug combinations may require different administration routes, or different residence times in the human body.4 Well tolerated drugs may become harmful in combination with other active principles, due to drug–drug interactions.5

A dual action compound contains the chemical elements required to interact with two molecular targets.6 A connection is chosen for each pharmacophore unit, and a suitable spacer separates the two units without disturbing their biological activities.7

Cancer implies a huge variety of pathologically altered mechanisms in the body, and cancer research works on hundreds of putative molecular targets.7 Cancer cells either mutate the drug target or transport the drug outside the cancer cell (imatinib8 and taxol9 are known examples of resistance to marketed drugs). Cancer cells are less likely to develop resistance against a dual action compound simultaneously directed against two essential molecular targets. We chose integrins/angiogenesis10 and inhibition of apoptosis proteins (IAPs)/apoptosis11 because our research group has accumulated significant experience on both target classes in the past.

Project rationale

Integrins $\alpha_v\beta_3$, $\alpha_v\beta_5$ and $\alpha_v\beta_1$ play a key role in angiogenesis and tumour development, and are accessible as cell surface receptors interacting with extracellular ligands.12 They are involved in angiogenesis, tumour progression and metastasis.13 The tripeptide sequence Arg-Gly-Asp (RGD) is the common motif used by endogenous ligands to recognize and bind such integrins.

Cyclo[Arg-Gly-Asp-Phe-(Me)-Val] (cilengitide)14 (1, Fig. 1) reached phase III clinical trials against glioblastoma multiforme. We reported cyclic RGD-based peptidomimetics, either built on 4-substituted aza-bicyclo[4.3.0]nonanes (ABN) (2, Fig. 1),15,16 or built on bifunctional diketopiperazines (DKP) (3, Fig. 1),17 as potent inhibitors of the purified $\alpha_v\beta_3$ receptor.

Apoptosis is started by stimuli received from within the cell, or from the external environment.18 Degradation of cellular protein components is carried out by initiator and execu-
tioner Cysteine ASPartic acid-specific proteASES (caspases). IAPs bind through their baculovirus inhibitor repeat (BIR) domains to the initiator CASP-9 (BIR3 domain, primary binding site) and to the executioner CASP-3 and CASP-7 (linker-BIR2 domain, secondary site), block caspases in their inactive forms and antagonize apoptosis. Endogenous SMAC protein (Second Mitochondria-derived Activator of Caspases) binds to the BIR3/linker-BIR2 domains of IAPs and prevents CASP-3/-7/-9 inactivation, restoring caspase-dependent apoptosis.

Structural studies showed that the AVPI N-terminal sequence of SMAC binds to IAPs with nanomolar affinity. Pro-apoptotic AVPI mimetics such as are undergoing clinical evaluation as anticancer agents. We introduced 4-substituted aza-bicyclo[5.3.0]decane (ABD) derivatives (e.g., , Fig. 1), endowed with good cell-free potency against IAPs and moderate cytotoxicity.

Since integrins are overexpressed on the surface of cancer cells, their ligands can be used as tumour-homing/anti-angiogenic peptidomimetics for site-directed delivery of cytotoxic drugs. For example, the cyclic RGD ligand–doxorubicin conjugate (Fig. 2) is highly cytotoxic against cancer cells overexpressing integrins $\alpha_v\beta_3/\alpha_v\beta_5$ on their membrane. We reported good stability and in vivo efficacy in a mouse model of human ovarian cancer for the cyclic[ABN-RGD]paclitaxel conjugate (Fig. 2).

We reasoned that, by connecting the AVPI/SMAC mimic unit with a cyclic RGD ligand such as or , dual action conjugates targeting both angiogenesis and apoptosis could be created.

Herein we present the synthesis and biological evaluation of a small series of cyclic RGD ligand–ABD SMAC mimetic dual action conjugates (Fig. 3). We explored (i) the influence of 4- (11, 12) and C-terminus (13) connections on the ABD SMAC mimetic unit, (ii) the influence of the ring size of the cyclic RGD ligand unit (15-membered compounds 11, 17-membered compound 13), and (iii) the presence of an ester- (11) or of an amide-containing (12, 13) linker connecting the cyclic RGD and ABD SMAC portions.

Fig. 1 Cyclic RGD ligands of $\alpha_v\beta_3$ integrin (Cilengitide (1, 15-membered), cyclo[ABN-RGD] (2, 15-membered) and cyclo[DKP-RGD] (3, 17-membered)) and pro-apoptotic SMAC mimetics (GDC-0152), 5–7.

Results and discussion

Chemistry

Synthetic targets – rationale. Compounds 11 and 12 (Fig. 3) are dual action conjugates where the cyclo[DKP-RGD] integrin ligand unit 3 is coupled with the ABD SMAC mimetic unit 6. The former unit bears a p-aminomethyl group on the DPN benzyl substituent, while the latter unit is functionalised either with a p-hydroxymethyl (11, $X = O$) or with a p-aminomethyl group (12, $X = NH$) on the 4-benzylaminoethyl substituent. Ideally, both substitutions on the cyclo[DKP-RGD] ligand 3 and on the ABD SMAC mimetic 6 should not affect their binding affinity to integrin $\alpha_v\beta_3$ and to IAPs, respectively. 1,4-Butanediol acid is used as a relatively short linker, because the distance between the DKP and the ABD scaffolds (21 atoms, including two phenyl groups) is largely determined...
by the DKP-nitrogen \(p\)-aminomethylbenzyl and the ABD 4-(\(p\)-X-methylbenzylaminoethyl) substitutions.

Compound 13 (Fig. 3) was made by coupling a \textit{cyclo[ABN-RGD]} integrin ligand unit 2, where the original 4-hydroxymethyl substitution was replaced by 4-aminomethyl group, with the ABD SMAC mimetic 5, where the pro-\((S)\) phenyl of the original C-terminal diphenylmethylamide was replaced by a carboxylic group. Once again, ideally both substitutions should be well tolerated in terms of binding affinities to the respective molecular targets.16,34 11-Aminoundecanoic acid was used as a relatively long linker, to keep a suitable distance (18 atoms) between the ABN and ABD scaffolds.

\textit{Cyclo[DKP-RGD]-ABD dual action compounds 11 and 12}. Our synthetic strategy to the ester-connected conjugate 11 started from previously reported \(N\)-Boc protected amine 16 (Scheme 1).28 Its C-terminal CONH–CHPh\(_2\) amide contributes to BIR/IAP binding,28,35 while its 4-aminoethyl function is used as a connection for the linker, which was built as shown in Scheme 1.

Namely, amine 1628 was submitted to a reductive alkylation (steps b, c, Scheme 1) with 4-hydroxymethyl benzaldehyde 15 (obtained by selective reduction with sodium borohydride of terephthalaldehyde 14, step a). The resulting aminoalcohol 17 was chemoselectively \(N\)-Boc protected (step d), and finally bis-\(N\)-Boc protected benzyl alcohol 18 was acylated with succinic anhydride (step e, Scheme 1) to yield the ester-connected construct 19. The overall yield for the reaction steps from 16 to 19 was a rather good 62%. A single direct phase chromatographic column (step c) was needed to purify the reaction products.

Construct 19 was then coupled to the previously reported \textit{cyclo[DKP-RGD]} derivative 2032 (steps a, b, Scheme 1), to give the bis-N-Boc protected, ester-connected conjugate 21. The multi-functional nature of both coupling partners and the presence of potentially reactive functions (e.g., the guanidine and carboxylate functions in 20) required the initial activation of the carboxylic group of 19 (step f), followed by its coupling with the amino group of 20 (step g) under carefully controlled conditions. Namely, coupling at pH 7.5 largely prevented side reactions involving the unprotected functionalities of 20, and provided an acceptable 40% overall yield. Finally, acidic hydrolysis of the N-Boc groups led to quantitative deprotection and
isolation of target **cyclo[DKP-RGD]-ABD**, ester-connected dual action conjugate 11 (Scheme 1). HPLC purification was required to obtain pure compounds 21 and 11.

Our synthetic strategy to the amide-connected conjugate 12, and in particular to the key bis-N-Boc protected carboxylate 28, is shown in Scheme 2. Amine 16 was submitted to a reductive alkylation (steps c, d, Scheme 2) with (p-aminomethyl) benzaldehyde 24, obtained in turn by chemoselective N-Cbz protection of (p-aminomethyl)phenyl methanol 22 (step a), followed by partial oxidation with manganese dioxide of (p-Cbz-aminomethyl)phenyl methanol 23 (step b). The resulting N-Cbz, N-Boc protected diamine 25 was N-Boc protected on its free secondary amine (step e), its primary amine was deprotected by hydrogenolysis (step f), and finally bis-N-Boc protected diamine 27 was acylated with succinic anhydride (step g, Scheme 2) to yield the amide-connected construct 28. The overall yield for the reaction steps from 16 to 28 was an excellent 82%. A direct phase chromatographic column (step d) and a reverse phase HPLC purification (step g) were required to obtain pure 28.

Construct 28 was then coupled to the previously reported **cyclo[DKP-RGD]** derivative 20 (steps h, i, Scheme 2), to give the bis-N-Boc protected, amide-connected conjugate 29. Final acidic N-Boc deprotection (step j, Scheme 2) led to target **cyclo[DKP-RGD]-ABD**, amide-connected dual action conjugate 12 in a good 49% overall yield.
The experimental conditions and purification protocols for each reaction step in Scheme 4 leading to conjugate 12 are identical to the corresponding steps described in Scheme 1. A comparison between the yields of corresponding steps (steps b–e, Scheme 1, and steps c–g, Scheme 2; steps a–c, Scheme 1 and 2) shows better results for amide-connected conjugate 12. It is reasonable to hypothesize a lower stability of the ester bond in ester-connected conjugate 11, and in intermediates 19 and 21, when compared with the amide bond in amide-connected conjugate 12, and in intermediates 28 and 29. This may lead to lower overall yields either under the reaction conditions, or during the work up-purification protocols.

trans-Cyclo[ABN-RGD]-ABD dual action compound 13. Our synthetic strategy to the amide-connected conjugate 13 required the synthesis of N-Boc protected carboxylic acid 30 (Scheme 3). Its 4-(2-benzoylaminoethyl) substituent contributes to BIR/IAP binding. The C-terminal carboxylic acid is the anchoring point for the linker.

The synthesis of N-Boc protected carboxylic acid 30 started from the already reported tricyclic ester 31. Namely, simultaneous hydrogenolytic isoxazolidine opening and benzyl deprotection (step a, Scheme 3) and chemoselective N-Boc protection (step b) provided N-protected alcohol 32. Mesylation (step c) and microwave-assisted nucleophilic substitution (step d) led to N-protected aminonitrile 33. Acidic deprotection (step e, aminonitrile 34) was followed by amidation of the 3-amino group with N-protected/methylated (S)-aminobutyric acid (step f), yielding nitrile 35. Nitrile reduction was carried out using the H-Cube™ continue flow hydrogenation apparatus (step g), and the amino function of compound 36 was
benzyolated (step h). Finally, methyl ester 37 was hydrolysed under basic conditions (step i, Scheme 3) to provide N-Boc protected carboxylic acid 30. The overall yield for the nine reaction steps from 31 to 30 was an acceptable 32% (average reaction yield = 89%). Four direct phase chromatographic separations (steps b, d, f, h) were needed to purify the reaction products.

The synthetic strategy designed to prepare the amide-connected linker construct 38 is reported in Scheme 4. 11-Aminoundecanoic acid 39 was esterified (step a, Scheme 4) and the resulting aminoster 40 was coupled with N-Boc-(S)-phenylglycine using classical peptide coupling conditions (step b). Acidic deprotection (step c) of N-Boc protected 41 led to the aminoster linker 42 as a hydrochloride salt. The linker was then coupled to N-Boc protected carboxylic acid 30 (step d) to provide ester 43. Hydrolysis of the methyl ester (step e) yielded the expected amide-connected construct 38. The ester 43 was also N-deprotected (step f, Scheme 4) to provide the standard compound 44 for biological purposes \((vide infra, Table 1)\). The overall yield of the reaction steps involving ABD SMAC mimetic intermediates (steps d, e; Scheme 4) was a moderate 37%. Two direct phase chromatographic separations (steps b, d) were required to purify the reaction products. The carboxylic acid construct 38 was then coupled to previously reported cyclo[ABN-RGD]methylamine 45\(^\text{16}\) (step g, Scheme 4), to give the N-Boc protected, amide-connected conjugate 46. Final acidic N-Boc deprotection (step h, Scheme 4) led to target cyclo[ABN-RGD]-ABD, amide-connected dual action conjugate 13 in a low, unoptimized two-step 17% yield.

Biology

Compound profiling – rationale. The cell-free potency of the dual action conjugates 11–13 on the BIR domains of IAPs (SMAC mimetic unit), and on integrins \(\alpha_\beta_1\) and \(\alpha_\beta_5\) (cyclic RGD ligand unit) was investigated to confirm the affinity for their molecular targets. Then, their cytotoxicity on tumour cell lines characterized by various levels of cytoplasmic IAPs and membrane integrins was investigated.

Cell-free assays – BIR domains/IAPs. Three BIR domain-based IAP portions were used to test the affinity of the dual action conjugates 11–13. The primary BIR3 binding site/domain from XIAP and cIAP2 was selected to measure the affinity for two of the most therapeutically relevant IAPs.\(^{28,29,36}\) The bi-functional linker-BIR2-BIR3 portion from XIAP was selected to determine any SMAC dimer-like behaviour of the dual action conjugates 11–13.\(^{37,38}\) The standard monomeric SMAC mimetic amides 5 and 6 (Fig. 1), and esters 7 (Fig. 1) and 44 (Scheme 4) were tested for comparison. Compound 5 bears a 11, 12-like 4-benzylaminoethyl substituent, compound 6 bears a 13-like 4-benzoylaminoethyl substituent, compound 7 bears a C-terminus phenylglycinamide ester, while compound 44 bears a C-terminus phenylglycinamido-linker ester substituent. Their IC\(_{50}\) values are reported in Table 1. The results clearly show that the attachment of a linker and a cyclic RGD ligand onto the SMAC mimetic unit does not significantly affect its affinity for IAPs. Indeed, 4-connected dual action conjugates 11 and 12 and reference compounds 5 and 6 show comparable affinity for mono- and bi-functional domains from

Scheme 3 Synthesis of the N-Boc protected carboxylic acid intermediate 30. Reagents and conditions: (a) HCOONH4, Pd(OH)\(_2\)/C, THF–H\(_2\)O 4/1, 2% AcOH, 70 °C, 6 h, then rt, 18 h; (b) Boc\(_2\)O, TEA, dry CH\(_2\)Cl\(_2\), rt, 20 h, 59% over two steps; (c) MsCl, TEA, dry CH\(_2\)Cl\(_2\), 0 °C to rt, 2 h; (d) dry DMF, MicroWave, 80 °C, 2 h, 84% over two steps; (e) AcCl, dry MeOH, rt, 5 min, 100%; (f) BzCl, TEA, dry CH\(_2\)Cl\(_2\), rt, 5 h, 92%; (g) LiOH, THF–H\(_2\)O, 0 °C to rt, 5 h, 88%.
XIAP. The same is true for C-terminus connected dual action conjugate 13 and reference compounds 7 and 44. As expected, cyclic RGD-based reference compounds 2 and 3 did not show affinity for any BIR construct from IAPs.

The higher affinity of dual action conjugates 11–13 for cIAP proteins is consistent with what is generally observed for monomeric SMAC mimetics.29

Cell-free assays - αvβ3/αvβ5 integrins. The dual action conjugates 11–13 were tested in vitro for their ability to inhibit bio- tinylated vitronectin binding to the purified αvβ3 and αvβ5 receptors.32,33 The standard monomeric, integrin ligands 2 and 3 (Fig. 1), built respectively on a cyclo[ABN-RGD], 13-like scaffold, and on a cyclo[DKP-RGD], 11, 12-like scaffold, were tested for comparison. Their IC50 values are reported in Table 2. The three dual action conjugates 11–13 show nano-

Table 1 IC50s of compounds 2, 3, 5–7, 11–13, 44 on BIR portions from IAPs

<table>
<thead>
<tr>
<th>Compound</th>
<th>BIR3, XIAP (nM)</th>
<th>l-BIR2-BIR3, XIAP (nM)</th>
<th>BIR3, cIAP2 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>52.0 ± 4.5</td>
<td>50.5 ± 7.8</td>
<td>1.33 ± 0.3</td>
</tr>
<tr>
<td>12</td>
<td>25.5 ± 1.7</td>
<td>57.5 ± 5.8</td>
<td>0.73 ± 0.1</td>
</tr>
<tr>
<td>13</td>
<td>66.0 ± 5.4</td>
<td>175.8 ± 27.5</td>
<td>1.48 ± 0.2</td>
</tr>
<tr>
<td>5</td>
<td>120.0 ± 18.6</td>
<td>55.0 ± 13.1</td>
<td>NT</td>
</tr>
<tr>
<td>6</td>
<td>110.0 ± 26.4</td>
<td>27.0 ± 12.4</td>
<td>NT</td>
</tr>
<tr>
<td>7</td>
<td>760.0 ± 99.2</td>
<td>190.0 ± 49.1</td>
<td>NT</td>
</tr>
<tr>
<td>44</td>
<td>90.4 ± 12.2</td>
<td>109.8 ± 27.1</td>
<td>1.57 ± 0.2</td>
</tr>
<tr>
<td>2</td>
<td>>10 000</td>
<td>>10 000</td>
<td>NT</td>
</tr>
<tr>
<td>3</td>
<td>>10 000</td>
<td>>10 000</td>
<td>NT</td>
</tr>
</tbody>
</table>
Table 2 Inhibition of biotinylated vitronectin binding to αvβ3 and αvβ5 receptors by compounds 2, 3, 5–7, 11–13, 44

<table>
<thead>
<tr>
<th>Compound</th>
<th>αvβ3 IC50 (nM)</th>
<th>αvβ5 IC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>70.1 ± 0.1</td>
<td>900 ± 380</td>
</tr>
<tr>
<td>12</td>
<td>36.5 ± 0.6</td>
<td>1500 ± 700</td>
</tr>
<tr>
<td>13</td>
<td>105.2 ± 3.4</td>
<td>649 ± 25</td>
</tr>
<tr>
<td>2</td>
<td>20.2 ± 1.9</td>
<td>205 ± 34</td>
</tr>
<tr>
<td>3</td>
<td>4.5 ± 1.1</td>
<td>149 ± 25</td>
</tr>
<tr>
<td>5</td>
<td>>10 000</td>
<td>>10 000</td>
</tr>
<tr>
<td>6</td>
<td>>10 000</td>
<td>>10 000</td>
</tr>
<tr>
<td>7</td>
<td>>10 000</td>
<td>>10 000</td>
</tr>
<tr>
<td>44</td>
<td>>10 000</td>
<td>>10 000</td>
</tr>
</tbody>
</table>

Table 3 Cytotoxicity of compounds 11–13, 2–3, 5–7, 44

<table>
<thead>
<tr>
<th>Compound</th>
<th>MDA-MB-231 (μM)</th>
<th>IGROV-1 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>9.7 ± 1.6</td>
<td>>25</td>
</tr>
<tr>
<td>12</td>
<td>>25</td>
<td>>25</td>
</tr>
<tr>
<td>13</td>
<td>20.5 ± 2.2</td>
<td>11.5 ± 2.5</td>
</tr>
<tr>
<td>2</td>
<td>>25</td>
<td>>25</td>
</tr>
<tr>
<td>3</td>
<td>>25</td>
<td>>25</td>
</tr>
<tr>
<td>5</td>
<td>13.5 ± 1.6</td>
<td>>25</td>
</tr>
<tr>
<td>6</td>
<td>8.1 ± 0.9</td>
<td>>25</td>
</tr>
<tr>
<td>7</td>
<td>>25</td>
<td>>25</td>
</tr>
<tr>
<td>44</td>
<td>>25</td>
<td>>25</td>
</tr>
</tbody>
</table>

molar affinity for both αvβ3 (stronger interaction) and αvβ5 integrin (weaker interaction), with a limited loss in binding strength with respect to the reference compounds 2 and 3. However, their residual affinity (nanomolar) should be sufficient to target integrin-expressing tumour cells. As expected, reference SMAC mimetics 5–7 and 44 did not show affinity for the αvβ3 and αvβ5 receptors. Based on these promising cell-free results, we decided to examine the cytotoxic activity of the three dual action conjugates 11–13 on two different tumour cell lines.

Cytotoxicity - tumour cells. The dual action conjugates 11–13 were tested in cellular assays for their ability to kill tumour cells, either expressing integrin receptors on their surface or relying on IAP proteins to impair the physiological apoptotic process. We selected ovarian IGROV-1 carcinoma cells as representatives for the former, and breast cancer MDA-MB-231 cells for the latter group. The standard monomeric, integrin ligands 2 and 3 (Fig. 1) and IAP inhibitors 5–7 and 44 (Fig. 1 and Scheme 4), were tested for comparison. Their IC50 values are reported in Table 3. The results clearly show that dual action conjugates 11–13 are endowed with moderate cytotoxic activity. Namely, 4-ester-connected conjugate 11 and reference SMAC mimetic 5 are similarly potent against MDA-MB-231 cells. The same is true for C-terminus-connected conjugate 13 and reference SMAC mimetic 6. The loss of cytotoxicity for 4-amide-connected conjugate 12 with respect to 4-ester-connected conjugate 11 may be due to ester hydrolysis and SMAC mimetic unit release for the latter compound, as observed by us with cyclic RGD ligand—paclitaxel conjugates. Surprisingly, C-terminus-amide connected conjugate 13 shows moderate cytotoxicity on MDA-MB-231 cells, although no hydrolysis or SMAC unit release can easily take place.

As expected, reference cyclic RGD ligands 2 and 3 per se do not show any cytotoxicity against integrin-rich IGROV-1 cells. The same is true for reference SMAC mimetics 5–7 and 44. Thus, we assumed that dual action conjugates 11–13 should also be inactive against IGROV-1 cells. Surprisingly, C-terminus-amide-connected conjugate 13 shows cytotoxicity on IGROV-1 cells, possibly suggesting an advantage for C-terminus connected dual action compounds in terms of cellular activity.

Conclusions

In this paper we reported the rational design, synthesis and in vitro evaluation of cyclic RGD ligand–SMAC mimetic conjugates 11–13. We successfully confirmed their affinity for the molecular target of each monomeric unit, and we ascertained that the moderate cytotoxicity of their monomeric precursors can be maintained. Some preliminary results (e.g., the cytotoxic activity for C-terminus-amide connected conjugate 13 on IGROV-1 cells) indicate that the combination of a cyclic RGD ligand-based tumour targeting/anti-angiogenic unit with a SMAC mimetic-based pro-apoptotic unit may lead to synergistic/enhanced anticancer effects.

More generally, we plan to investigate the influence of linker composition (e.g., PEG-based or amides) and hindrance (e.g., rigid/constrained linkers, short linkers), and of overall physico-chemical (e.g., lipophilicity) and electronic properties (e.g., 4-substituents on the ABD SMAC mimetic unit) on biological activity. We aim to establish a detailed SAR, in order to evaluate the potential for cyclic RGD ligand–SMAC mimetic conjugates as anticancer agents in vitro and in vivo.

Experimental

Materials and methods

Reactions requiring anhydrous conditions were carried out in flame-dried glassware, with magnetic stirring and under a nitrogen atmosphere. Commercially available reagents were used as received. Anhydrous solvents were purchased from commercial sources and withdrawn from the container by syringe, under a slight positive pressure of nitrogen. N-Boc, N-Me-(S)-2-aminobutyric acid, SMAC amine 16, cyclo[DKP-RGD]benzylamine 20, SMAC tricyclic ester 31, and cyclo[ABN-RGD]methylamine 45 were prepared according to literature procedures. Their analytical data were in agreement with those already published. Reactions were monitored by analytical thin-layer chromatography (TLC) using silica gel 60 F254 pre-coated glass plates (0.25 mm thickness). Visualization was accomplished by irradiation with a UV lamp and/or staining with a potassium permanganate alkaline solution or ninhydrin. Flash column chromatography was performed according to the method of Still and co-workers using Chromagel.
60 ACC (40–63 μm) silica gel. Proton NMR spectra were recorded on a spectrometer operating at 400.16 MHz. Proton chemical shifts are reported in ppm (δ) with the solvent reference relative to tetramethylsilane (TMS) employed as the internal standard. The following abbreviations are used to describe spin multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad signal, dd = doublet of doublets. Carbon NMR spectra were recorded on a spectrometer operating at 100.63 MHz, with complete proton decoupling. Carbon chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal standard. HPLC purifications were performed on a Dionex Ultimate 3000 instrument equipped with a Dionex RS Variable Wavelength Detector (column: Atlantis® Prep T3 OBD™ 5 μm 19 × 100 mm). High resolution mass spectra (HRMS) were performed on a Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometer APEX II & Xmass software (Bruker Daltonics) – 4.7 T Magnet (Magnox) equipped with ESI source, available at CIGA (Centro Interdipartimentale Grandi Apparecchiature) c/o Università degli Studi di Milano. Low resolution mass spectra (MS) were recorded on a Waters Acuity™ UPLC-MS instrument (ESI source).

Chemistry

General procedure for the synthesis of compound 11

4-Hydroxymethylbenzaldehyde 14 (1.0 g, 7.45 mmol, 1 eq.) was dissolved in 12.5 mL of EtOH–H₂O (95 : 5), and then 17.5 mL of THF were added. To the resulting stirred solution, NaBH₄ (70 mg, 1.86 mmol, 0.25 eq.) was added at −5 °C in small portions over 30 minutes. The mixture was stirred for 6 h, while the temperature was maintained at 0 °C. The reaction mixture was then adjusted to pH = 5 with 2 M HCl. The solvent was evaporated at reduced pressure, then H₂O (20 mL) was added and the solution was extracted three times with AcOEt. The resulting organic phase was dried over Na₂SO₄ and the solvent was evaporated at reduced pressure. The crude product was purified by flash chromatography on silica gel (n-hexane–AcOEt, 1:1) as eluent to afford the pure desired product 15 as a white solid (840 mg, 6.18 mmol, 83%).

Rₐ = 0.5 (Hex–AcOEt, 4:6); ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 7.71 (d, J = 7.8 Hz, 2H), 7.39 (d, J = 7.9 Hz, 2H), 4.65 (s, 2H), 2.07 (s, 1H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 192.6, 148.8, 135.9, 130.2, 127.3, 64.5.

tert-Butyl (((S)-1-(((3S,6S,7R,9aS)-3-benzhydrylcarbamoyl)-7-(1-(4-(hydroxymethyl)benzyl)amino)ethyl)-5-oxoactahydro-1H-pyrrolo[1,2-a]azepin-6-yl)amino)-1-oxobutan-2-yl)(methyl)carbamate 17. A solution of SMAC amine 16²⁸ (50 mg, 0.074 mmol, 1.05 eq.), DIPEA (18 µL, 0.105 mmol, 1.5 eq.) in dry MeOH (0.5 mL) was added to a flask containing compound 15 (9.5 mg, 0.074 mmol, 1 eq.) under nitrogen atmosphere. The mixture was left stirring at room temperature for 5 h. NaBH₄ (5.3 mg, 0.14 mmol, 2 eq.) was then added stepwise (5 additions within 3 min), and the mixture was stirred at room temperature under nitrogen for 30 minutes. The mixture was then concentrated under vacuum. 5 mL of a saturated solution of NaHCO₃ were added, then the mixture was extracted with AcOEt (7 mL, 3 times). The organic phase was dried over Na₂SO₄ and the solvent was evaporated at reduced pressure. The crude product was purified by flash chromatography on silica gel (CH₂Cl₂–MeOH, 9:1 as eluent) to afford the pure desired product 17 as a white foam (41 mg, 0.059 mmol, 80% yield).

**Rₐ = 0.3 (CH₂Cl₂–MeOH, 9:1); **¹H NMR (400 MHz, THF-d₈) δ 8.27 (bs, 1H), 7.54 (bs, 1H), 7.40–7.00 (m, 14H), 6.21 (d, J = 8.81 Hz, 1H) 4.62 (d, J = 6.53 Hz, 1H), 4.60–4.35 (m, 4H), 4.00–3.70 (m, 4H), 2.84 (bs, 3H), 2.66 (bs, 1H), 2.52 (bs, 1H), 2.15 (m, 4H), 1.91 (m, 2H), 1.85–2.57 (m, 4H), 1.46 (s, 9H), 1.47–1.31 (m, 4H), 0.87 (t, J = 7.32 Hz, 3H); ¹³C NMR (400 MHz, THF-d₈) δ 172.3, 171.5, 170.6, 157.0, 143.5, 143.3, 142.7, 129.2, 129.0, 128.9, 128.2, 128.1, 127.6, 127.5, 127.0, 80.2, 80.1, 79.7, 67.9, 67.7, 67.4, 67.2, 66.9, 66.7, 66.6, 66.4, 64.4, 53.4, 53.1, 49.3, 48.4, 47.1, 35.0, 34.9, 34.6, 34.4, 33.9, 33.7, 33.5, 31.8, 27.7, 27.4, 27.1, 25.5, 25.3, 25.1, 24.9, 24.7, 22.4, 22.2, 22.2; MS (ESI) m/z caled for [C₄₃H₅₈N₅O₆]+: 740.44 [M+H]⁺; found: 739.75.

tert-Butyl (((S)-1-(((3S,6S,7R,9aS)-3-benzhydrylcarbamoyl)-7-(2-(tert-butoxycarbonyl)carbonyl)-(4-hydroxymethyl)benzyl)amino)ethyl)-5-oxoactahydro-1H-pyrrolo[1,2-a]azepin-6-yl)amino)-1-oxobutan-2-yl) (methyl)carbamate 18. A solution of compound 17 (41 mg, 0.059 mmol, 1.4 eq.) in dry CH₂Cl₂ (0.6 mL) was stirred in an ice bath under nitrogen atmosphere. A solution of Boc₂O (17 mg, 0.097 mmol, 2 eq.) in dry CH₂Cl₂ (0.2 mL) was added. The mixture was stirred at 0 °C for 1 h under nitrogen atmosphere, then stirring was continued overnight at room temperature. Then, additional Boc₂O (6.7 mg, 0.030 mmol, 0.5 eq.) was dissolved in CH₂Cl₂ (0.2 mL) and added, and stirring continued for 4 h. The solvent was removed at reduced pressure, and the crude product was passed through a plug of silica gel (CH₂Cl₂–MeOH, 95:5 as eluent) to afford the desired pure product 18 as a white foam (41 mg, 0.049 mmol, 87% yield).

Rₐ = 0.7 (CH₂Cl₂–MeOH, 9:1); ¹H NMR (400 MHz, aceton-d₆) δ 8.18 (d, J = 8.70 Hz, 1H), 7.40–7.08 (m, 14H), 6.19 (d, J = 8.66 Hz, 1H), 4.69 (d, J = 7.92 Hz, 1H), 4.61 (d, J = 5.76 Hz, 2H), 4.58–4.30 (m, 4H), 4.13 (t, J = 5.76 Hz, 1H), 3.99 (m, 1H), 3.25 (m, 1H), 2.25 (m, 1H), 2.17 (bs, 1H), 2.00–1.58 (m, 7H), 1.50 (s, 18H), 1.46 (m, 4H), 1.32 (m, 2H), 0.90 (t, J = 7.38 Hz, 3H); MS (ESI) m/z caled for [C₄₃H₅₈N₅O₆]+: 840.49 [M+H]⁺; found: 840.45.

4-(((2-(tert-butoxycarbonyl)methyl)amino)butanamido)-5-oxoactahydro-1H-pyrrolo[1,2-a]azepin-7-yl)ethyl((tert-butoxycarbonyl)amino)benzyl(oxo)-4-oxobutanoic acid 19. Compound 18 (17 mg, 0.020 mmol, 1 eq.) was dissolved in dry CH₂Cl₂ (0.12 mL). Then DIPEA (4.1 µL, 0.024 mmol, 1.2 eq.) was added and the mixture was stirred in an ice bath. DMAP (1.46 mg, 0.012 mmol, 0.6 eq.) and succinic anhydride (3.6 mg, 0.036 mmol, 1.8 eq.) were added. The reaction was stirred at room temperature under nitrogen atmosphere for 2 h. CH₂Cl₂ (15 mL) was then added and the solution was washed with a solution of 1 M KHSO₄ (7 mL, twice). The aqueous phase was
extracted with CH2Cl2 (7 mL, once), then the collected organic phases were dried over Na2SO4. The solvent was evaporated at reduced pressure to afford the desired product 19 as a white foam that was used without further purification (17 mg, 0.018 mmol, 90% yield).

R f = 0.6 (CH2Cl2-MeOH, 9:1);

1H NMR (400 MHz, acetone-d6) δ 10.72 (bs, 1H), 8.19 (d, J = 8.4 Hz, 1H), 7.48–6.96 (m, 15H), 6.19 (d, J = 8.4 Hz, 1H), 5.12 (s, 2H), 4.69 (d, J = 7.1 Hz, 1H), 4.63–4.26 (m, 3H), 3.99 (d, J = 7.1 Hz, 1H), 3.27 (s, 1H), 3.03–2.93 (m, 2H), 2.80 (s, 3H), 2.70–2.54 (m, 2H), 2.36–2.21 (m, 1H), 2.16 (s, 1H), 2.02–1.57 (m, 6H), 1.49 (s, 18H), 1.45–1.35 (m, 6H), 0.88 (t, J = 7.4 Hz, 3H). 13C NMR (400 MHz, acetone-d6) δ 173.6, 172.7, 170.8, 146.3, 143.6, 139.7, 136.3, 129.8, 129.3, 129.1, 128.1, 127.9, 79.8, 66.3, 62.1, 60.7, 59.2, 57.3, 55.8, 49.6, 45.4, 34.6, 34.0, 33.6, 30.1 (overlapping with solvent signal), 29.8 (overlapping with solvent signal), 29.2, 28.6, 27.3, 22.2, 11.0; MS (ESI) m/z calcd for [C21H17N2O11]+: 490.51 [M + H]+; found: 490.33.

2-(((S, S, S, S, S, S, S)-18-(4-((4-(((2-(3-(2-(3-methoxypropyl)-11-(3-guanidinopropyl)-4,7,10,13,17,19-hexaoxo-18-(4-((4-(((2-(3-tert-butoxycarbonylamino)-7-(hydroxylcarbamoyl)-6-((3-(guanidinopropyl)-11-(3-guanidinopropyl)-18-(4-((4-(((2-((3-

phosphate bu0.1% CF3COOH to 30% H2O + 0.2% acetonitrile + 0.2% HCOOH in 15 minutes). The reaction mixture was then concentrated at reduced pressure while stirring was continued overnight at room temperature. The reaction mixture was then cooled to 0 °C, adjusting the pH to 7.5 with 0.2 M NaOH, and the product was obtained in 1.12 g of crude aminoalcohol that was used without further purification.

A solution of Boc2O (1.73 g, 7.67 mmol, 2.5 eq.) in 10 mL of dry CH2Cl2 was prepared and stirred at room temperature under nitrogen atmosphere. The previously prepared crude

General procedure for the synthesis of compound 12.

The general procedure for the synthesis of compound 12 is reported in the ESI.

General procedure for the synthesis of compound 13 (3S,6S,7S,9aS)-Methyl 6-(tert-butoxycarbonylamino)-7-(hydroxymethyl)-5-oxooctahydro-1H-pyrrolo[1,2-azepin-3-carboxylate 32.

Compound 321 (1.06 g, 3.07 mmol, 1 eq.), ammonium formate (2.23 g, 34.36 mmol, 11.2 eq.) and palladium hydroxide on carbon (320 mg, 30%) were dissolved in a mixture of THF–H2O 4:1 + 2% acetic acid (300 mL). The reaction mixture was then filtered over celite, washing with THF and CH2Cl2. The solvent was then removed at reduced pressure, obtaining 1.12 g of crude aminoalcohol that was used without any further purification.

A solution of Boc2O (1.73 g, 7.67 mmol, 2.5 eq.) in 10 mL of dry CH2Cl2 was prepared and stirred at room temperature under nitrogen atmosphere. The previously prepared crude
aminoalcohol (theoretical 3.07 mmol, 1 eq.) and dry TEA (1.1 mL, 7.89 mmol, 2.6 eq.) in 20 mL of dry CH₂Cl₂ were then added, and the reaction mixture was left under stirring at room temperature for 2 h. The reaction mixture was then diluted with CH₂Cl₂ and washed with 2 × 30 mL of 5% citric acid solution, with 2 × 30 mL of saturated NaHCO₃ and 2 × 30 mL of brine. The aqueous phase was washed with 2 × 20 mL of CH₂Cl₂, the organic phases were dried with Na₂SO₄, filtered, and the solvent was removed under reduced pressure.

The crude product was purified by flash chromatography (n-hexane–AcOEt 6:4 as eluent), yielding 643 mg of pure compound 32 as a white solid (1.80 mmol, 59% yield over two steps).

¹H NMR (400 MHz, CDCl₃) δ 6.14 (bd, 1H), 4.58 (dd, 1H, J = 4.6 Hz, J = 8.1 Hz), 4.25 (dd, 1H, J = 6.2 Hz, J = 10.5 Hz), 3.95–3.82 (m, 2H), 3.73 (s, 3H), 3.38 (dd, 1H, J = 12.1 Hz, J = 2.8 Hz), 2.25 (m, 1H), 2.18–1.96 (m, 4H), 1.92–1.72 (m, 3H), 1.55 (m, 1H), 1.42 (s, 9H). ¹³C NMR (100.6 MHz, CDCl₃) δ 173.1, 171.4, 158.3, 81.3, 65.3, 61.3, 59.5, 55.9, 53.0, 42.5, 34.2, 33.5, 31.8, 28.9, 28.4. MS (EI): m/z calcd for C₁₇H₂₈N₃O₅: 356.19; found: 357.0 [M – Boc + H⁺].

[(3S,6S,7R,9aS)-Methyl 6-[(tert-butoxycarbonyl)amino]-7-(cyanomethyl)-5-oxo-1H-pyrrolo[1,2-a]azepine-3-carboxylate](35) A 0.1 M solution of compound 32 (210 mg, 0.59 mmol, 1 eq.) in dry CH₂Cl₂ (6 mL) was prepared under nitrogen atmosphere; MsCl (101 mg, 0.88 mmol, 1.5 eq.) and dry TEA (246 μL, 1.79 mmol, 2.1 eq.) were added. The solution was stirred at 80 °C in a microwave pressure and the crude product was purified by flash chromatography (n-hexane–EtOAc 4:6 as eluent). The desired pure product 33 (0.59 g, theoretical 1.91 mmol, quantitative yield) was obtained without any purification.

A 2 N solution of the crude mesylate in dry DMF (1 mL) was prepared and nBu₄CN⁻ (770 mg, 2.87 mmol, 1.5 eq.) was added. The solution was stirred at 80 °C in a microwave synthesizer for 2 h. The solvent was removed at reduced pressure and the crude product was purified by flash chromatography (n-hexane–EtOAc 4:6 as eluent). The desired pure product 33 (0.59 g, 1.61 mmol) was obtained as a white powder (yield 84%).

¹H NMR (400 MHz, CDCl₃) δ 5.83 (bd, 1H), 4.60 (dd, 1H, J = 7.9 Hz, J = 4.3 Hz), 4.26 (m, 1H, J = 10.0 Hz, J = 7.6 Hz), 3.93 (dd, 1H, J = 15.3 Hz, 7.6 Hz), 3.76 (s, 3H), 2.76 (dd, 1H, J = 4.5 Hz, J = 17.0 Hz), 2.42–2.23 (m, 2H), 2.08 (m, 2H), 1.96 (m, 1H), 1.91–1.62 (m, 4H), 1.42 (s, 9H). ¹³C NMR (100.6 MHz, CDCl₃) δ 173.1, 169.8, 80.4, 60.6, 58.8, 56.3, 52.6, 37.8, 34.1, 33.5, 32.9, 28.4, 27.9, 21.0. MS (EI): m/z calcd for C₁₈H₂₆N₃O₅: 365.20; found: 366.2 [M + H⁺].

[(3S,6S,7R,9aS)-Methyl 7-(2-aminoethyl)-6-(tert-butoxycarbonyl)(methyl)-N-Boc-2-(tert-butoxycarbonyl)amino)butanamido)-5-oxooctahydro-1H-pyrrolo[1,2-a]azepine-3-carboxylate](36) Hydrogenation of the nitrile 35 was performed using the H-Cube™ continuous-flow hydrogenation reactor. Compound 35 (130 mg, 0.28 mmol, 1 eq.) was dissolved in 50 mL of 90:10 EtOH–H₂O and 1 M aqueous citric acid (0.28 mmol) was added. The reaction mixture was flowed through a Ni/Ra cartridge (hydrogen pressure: 60 bar; T = 60 °C; flow 0.5 mL min⁻¹). The reaction was completed after 24 hours. The solvent was removed at reduced pressure. The crude desired compound 36 (0.13 g, 0.277 mmol, quantitative yield) was used for the next step without any purification.

MS (EI): m/z calcd for C₂₃H₃₆N₄O₆: 464.26; found: 465.54 [M + H⁺].
(3S,6S,7R,9aS)-Methyl 7-((2-benzamidoethyl)-6-((R)-2-((tert-butoxycarbonyl)methyl)amino)butanamido)-5-oxooctahydro-1H-pyrrrolo[1,2-a]azepine-3-carboxylic acid 37. Compound 36 (234 mg, 0.50 mmol, 1 eq.) was dissolved under inert atmosphere in 5.0 mL of dry CH$_2$Cl$_2$, then 350 μL of dry TEA were added (2.50 mmol, 5 eq.). Benzoyl chloride (70 μL, 0.60 mmol, 1.2 eq.) was slowly added under vigorous stirring. The solution turned from yellow to dark red. After 2 h additional TEA (50 μL, 0.37 mmol, 0.7 eq.) and benzoyl chloride (50 μL, 0.43 mmol, 0.86 eq.) were added. After 3 h the reaction mixture was diluted with CH$_2$Cl$_2$ and washed with 30 mL of a 5% citric acid solution, 30 mL of a saturated NaHCO$_3$ solution, and 30 mL of brine. The organic phase was then dried with Na$_2$SO$_4$, filtered and the solvent removed under reduced pressure. A brownish oil residue was purified by flash chromatography (n-hexane:EtOAc 1:9), yielding 264 mg of pure desired product 41 (0.74 g, 1.65 mmol) was obtained as a white powder and used for the next step without any purification.

1H NMR (400 MHz, CDCl$_3$) δ 7.40–7.30 (m, 5H), 5.87 (bs, 1H), 5.76 (bs, 1H), 5.13 (bs, 1H), 3.69 (s, 3H), 3.23 (dd, 2H, J = 7.0 Hz, J = 13.1 Hz), 2.32 (t, 2H, J = 7.5 Hz), 1.63 (m, 2H), 1.43 (m, 9H), 1.38–1.10 (m, 14H).

13C NMR (100.6 MHz, CDCl$_3$) δ 174.3, 169.9, 155.2, 138.8, 129.0, 128.3, 127.2, 80.0, 58.7, 51.4, 39.8, 34.1, 29.3, 29.2, 29.1, 28.3, 26.6, 24.9. MS (ESI): m/z calcd for C$_{23}$H$_{30}$N$_4$O$_7$: 448.2; found: 449.6 [M + Na$^+$].

(S)-Methyl 11-(2-amino)-2-phenylacetamido)undecanoate 42. Compound 41 (298 mg, 0.66 mmol, 1 eq.) was dissolved in a 3 N methanolic HCl solution (11 mL 33 mmol, 50 eq.) and stirred under inert atmosphere at room temperature overnight. The reaction was then quenched with 10 mL of saturated Na$_2$SO$_4$ and extracted with EtOAc (3 × 10 mL). The combined organic phases were dried over Na$_2$SO$_4$ and evaporated at reduced pressure. The desired product 42 (0.22 g, 0.64 mmol, yield 97%) and used for the next step without any purification.

1H NMR (400 MHz, CDCl$_3$) δ 7.42–7.26 (m, 5H), 7.03 (bs, 1H), 4.53 (s, 1H), 3.68 (s, 3H), 3.26 (dd, 2H, J = 13.1 Hz, J = 7.1 Hz, J = 2.2 Hz), 2.31 (t, 2H, J = 7.5 Hz), 1.35–1.23 (m, 12H), 1.1C NMR (100.6 MHz, CDCl$_3$) δ 175.0, 173.5, 141.7, 129.3, 128.4, 127.3, 60.0, 51.4, 39.2, 34.0, 29.4, 29.2, 29.1, 26.7, 24.8. MS (ESI): m/z calcd for C$_{25}$H$_{32}$N$_4$O$_7$: 438.24; found: 439.6 [M + H$^+$].

Methyl 11-((S)-2-((3S,6S,7R,9aS)-7-(2-benzamidoethyl)-6-((R)-2-((tert-butoxycarbonyl)methyl)amino)butanamido)-5-oxooctahydro-1H-pyrrrolo[1,2-a]azepine-3-carboxamido)-2-phenylacetamido)undecanoate 43. Compound 30 (45.0 mg, 0.081 mmol, 1 eq.), HATU (47.0 mg, 0.124 mmol, 1.4 eq.), HOAt (24.3 mg, 0.178 mmol, 2 eq.) and dry DIPEA (50 μL, 0.28 mmol, 3 eq.) were dissolved in dry DMF (0.6 mL) under nitrogen atmosphere at room temperature. The solution was left under stirring for 10 minutes. Then a solution of compound 40 (5.3 mg, 24.6 mmol, quantitative yield) was obtained as a white powder and used for the next step without any purification.
(46.8 mg, 0.122 mmol, 1.4 eq.) and dry DIPEA (100 µL, 0.56 mmol, 6 eq.) in dry DMF (0.6 mL) was prepared under nitrogen atmosphere, and was added dropwise. The resulting reaction mixture was left under stirring at rt for 43 hours. Then, the solvent was removed under reduced pressure, the crude was dissolved in EtOAc (90 mL) and washed with a 5% citric acid aqueous solution (25 mL) and a saturated NaHCO₃ solution (25 mL). The organic phase was then dried with Na₂SO₄ filtered and the solvent was removed at reduced pressure. The crude product (100 mg) was purified by flash chromatography (EtOAc 100% as eluant), and the desired pure product 43 (44.1 mg, 0.050 mmol, yield 61%) was obtained as a white solid.

1 H NMR (400 MHz, [D₆]DMSO, ≈ 1:1 mixture of two conformers) δ 8.61 (bd, 0.5H), 8.48 (d, 0.5H, J = 8 Hz), 8.33 (m, 1H), 8.21 (m, 0.5H), 7.88–7.72 (m, 3H), 7.68 (m, 0.5H), 7.52–7.21 (m, 8H), 5.36 (d, 0.5H, J = 6 Hz), 5.34 (d, 0.5H, J = 5.9 Hz), 4.59 (dd, 1H, J = 7.4 Hz, 3.7 Hz), 4.52 (m, 1H), 4.40 (m, 1H), 4.00–3.90 (m, 1H), 3.58 (s, 3H), 3.23 (m, 2H), 3.04 (m, 2H), 2.70 (s, 1.5H), 2.69 (s, 1.5H), 2.28 (td, 2H, J = 7.4 Hz, 2.8 Hz), 2.14 (m, 1H), 2.05 (m, 1H), 1.94 (m, 1H), 1.86 (m, 1H), 1.80 (m, 1H), 1.79–1.70 (m, 2H), 1.68–1.57 (m, 2H), 1.57–1.38 (m, 6H), 1.35 (m, 2H), 1.34 (s, 9H), 1.26–1.14 (m, 12H), 0.81 (br, 3H).

13C NMR (100.6 MHz, [D₆]acetone, ≈ 1:1 mixture of two conformers) δ 137.0, 128.6, 128.4, 128.2, 128.1, 127.8, 127.7, 126.7, 126.1, 61.2, 58.3, 57.7, 57.5, 54.9, 39.1, 37.4, 34.1, 33.4, 33.1, 32.9, 32.7, 31.9, 27.6, 26.4, 26.3, 24.7, 10.0. MS (ESI): m/z calculated for C₄₈H₇₀N₆O₉: 889.83; found: 889.0 [M + H⁺].

11-(S)-(2-(3SS,6S,7R,9aS)-7-(2-Benzamidoethyl)-6-(1R,2R)-((tert-butoxycarbonyl)methyl)amino)butanamido)-5-oxooctahydro-1H- pyrrolo[1,2-α]azepine-3-carboxamido)-2-phenylacetamido)undecanoic acid 38. Compound 38 (34.1 mg, 0.038 mmol, 1 eq.) was dissolved in THF–H₂O 3:1 (400 µL), and 2 N aqueous LiOH (60 µL, 0.122 mmol, 3 eq.) was slowly added. The reaction mixture was stirred at room temperature for 5 hours. Then the reaction mixture was quenched with 1 M aqueous KHSO₄ (30 mL) and with a saturated NaHCO₃ solution (30 mL). The organic phase was then dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude residue was purified by flash chromatography (Biotage™, reverse phase, from 5% CH₃CN–95% H₂O to 100% CH₃CN as eluent), yielding pure 46 as a white solid (18.1 mg, 0.011 mmol, 30% yield).

1 H NMR (400 MHz, [D₆]acetone, mixture of two conformers) δ 8.51–8.30 (m, 1H), 8.16–8.06 (m, 1H), 7.82–7.44 (m, 4H), 7.59 (bs, 1H), 7.51–7.17 (m, 6H), 6.96 (m, 1H), 6.68 (s, 1H), 6.51 (bs, 1H), 5.44 (m, 1H), 4.68 (m, 1H), 4.59 (m, 1H), 4.57 (m, 1H), 4.53 (m, 1H), 4.30 (m, 1H), 4.26 (m, 1H), 4.20 (m, 1H), 4.14 (m, 1H), 4.09 (m, 0.5H), 4.00 (m, 0.5H), 3.84 (s, 3H), 3.47–3.25 (m, 3H), 3.23–3.06 (m, 8H), 2.99 (m, 1H), 2.80 (s, 3H), 2.72 (m, 1H), 2.67 (s, 3H), 2.61 (s, 3H), 2.53 (m, 1H), 2.44–2.31 (m, 3H), 2.26 (m, 1H), 2.14 (m, 1H), 2.08 (m, 2H), 2.02–1.85 (m, 4H), 1.75–1.18 (m, 3H), 0.88 (s, 3H).

13C NMR (75.4 MHz, [D₆]acetone, mixture of two conformers) δ 174.7, 172.2, 171.0, 170.8, 158.8, 157.3, 137.0, 135.9, 131.7, 129.3, 129.0, 128.5, 128.0, 124.7, 112.4, 80.9, 63.3, 62.0, 59.1, 57.8, 56.6, 55.8, 54.3, 52.0, 43.6, 41.1, 40.0, 38.1, 37.4, 36.8, 35.8, 34.2, 33.6, 32.8, 30.5, 30.3, 29.8, 29.3, 29.0, 28.5, 28.2, 27.3, 26.8, 26.3, 24.2, 22.4, 18.6, 14.3, 12.1, 11.1, 8.0. MS (ESI): m/z calculated for C₄₉H₇₁N₁₃O₁₄S: 1662.89; found: 1685.9 [M + Na⁺].

Cyclo-RGD/SMAC mimetic conjugate 13. Compound 46 (16.1 mg, 0.0097 mmol, 1 eq.) was dissolved in TFA–thioanisole–1,2-ethanedithiol–anisole 90:5:3:2 (2 mL) and stirred at room temperature for 2 h. After reaction completion, the solvent was evaporated under reduced pressure, then the crude was dissolved in H₂O (10 mL) and washed with iPr₂O (10 mL). The aqueous phase was evaporated under reduced pressure and the crude purified by HPLC (Waters Atlantis Prep T3 OBD 5 µm, 19 × 100 mm, column; solvents: A) H₂O + 0.1% TFA, B) CH₃CN + 0.1% TFA gradient from 90%A–10%B to
30%–70% B over 15 min.; flow rate 15 mL min⁻¹, λ = 210 nm, Rₑ = 8.8 min). The purified product was then freeze-dried to give the trifluoroacetate salt of the desired pure compound 13 as a white foam (8.4 mg, 0.0059 mmol, 57% yield).

1H NMR (400 MHz, D₂O) δ: 7.66 (d, 2H, 7.52 (m, 1H), 7.42 (q, 2H, J = 7.8 Hz) 7.38–7.28 (m, 5H), 5.23 (m, 1H), 4.62 (dd, 1H, J = 9.3 Hz, J = 7.3 Hz), 4.55–4.40 (m, 3H), 4.33 (d, 1H, J = 8.4 Hz), 4.25–4.15 (m, 2H), 4.06 (m, 1H), 3.98–3.83 (m, 2H), 3.48–3.39 (m, 2H), 3.24–2.95 (m, 7H), 2.76–2.63 (m, 2H), 2.62 (s, 3H), 2.60 (s, 3H), 2.42–2.30 (m, 3H), 2.21 (m, 1H), 2.15–1.97 (m, 5H), 1.96–1.74 (m, 7H), 1.72–1.50 (m, 6H), 1.49–1.39 (m, 4H), 1.34 (m, 2H), 1.22–1.11 (m, 5H), 1.10–0.99 (m, 8H), 0.95 (t, 3H, J = 7.5 Hz), 0.90 (t, 3H, J = 7.5 Hz).

13C NMR: δ (100 MHz, D₂O) C: 178.3, 175.2, 174.6, 173.8, 172.3, 171.5, 171.0, 136.9, 129.8, 129.6, 127.9, 127.8, 63.6, 62.9, 62.5, 59.0, 57.3, 57.1, 56.7, 53.7, 52.3, 43.2, 41.2, 40.9, 40.1, 38.3, 35.8, 33.6, 33.0, 32.3, 31.7, 30.9, 29.2, 29.1, 28.3, 27.7, 26.5, 26.1, 25.2, 24.3, 9.0. **HRMS (ESI)**: m/z calc. for C₆₅H₉₅N₁₅O₁₃: 1294.7301; found: 1294.7324 [M + H⁺].

Biology

General procedure for the fluorescence polarization-based BIR/IAP binding assay. The affinity of each tested compound for the BIR domains of XIAP and cIAP2 was evaluated as previously described. Recombinant XIAP (60 nM final concentration) and cIAP2 (25 nM) BIR3, or XIAP BIR23 (3 nM) domains were diluted in the assay buffer containing 100 mM potassium phosphate, pH 7.5, 100 µg mL⁻¹ bovine γ-globulin and 0.02% sodium azide. Serial dilutions of each tested compound (concentrations ranging from 2 µM to 0.2 nM) were added to displace a fluorescent probe (FITC-SMAC for BIR3 domains; SMAC-1F for BIR23) and fluorescence polarization was measured with the Ultra plate reader (Tecan), at excitation and emission wavelengths of 485 nm and 530 nm, respectively. The purified product was then freeze-dried to give the trifluoroacetate salt of the desired pure compound 13 as a white foam (8.4 mg, 0.0059 mmol, 57% yield).

Notes and references

30 K. Chen and X. Chen, Theranostics, 2011, 1, 189.

34 Several ABD-based mimetics bearing an (S)-phenylglycine methyl ester at their C-terminus showed biological activity similar to C-terminal diphenylmethyl amides (P. Seneci et al., unpublished data).

