Issue 7, 2014

A one pot synthesis of Au–ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity

Abstract

To enhance the photocatalytic efficiency of ZnO nanomaterials, plasmonic Au nanoparticles (NPs) have deliberately been introduced into ZnO through a facile, inexpensive one pot hydrothermal approach. The enhanced photocatalytic efficiency was ascribed to surface plasmon resonance induced local electric field enhancement of Au. Thus the photoproduced e–h+ pair in ZnO under sunlight irradiation is reluctant to recombine. The as-synthesized photocatalyst with an excellent sunlight driven photocatalytic activity can effectively decompose various kinds of organic dyes and maintain a high level of photoactivity even after four cycles. The photocatalytic activity of the Au–ZnO nanocomposites was examined by the photodegradation of a series of cationic and anionic dye molecules such as rhodamine B, Congo red, methyl orange, methylene blue, and Rose Bengal. It is interesting to note that with a reasonable increase in the Au concentration the shape of the nanocomposites remains unaltered but the visible light driven photocatalytic activity is enhanced. This observation and the result are promising for plasmonic photocatalysis. The presence of Au nanoparticles makes the Au–ZnO nanocomposite a superior photocatalyst over the ZnO nanomaterial and the nanocomposite presents altogether a different scenario. In a nut-shell the present study reports not only a new insight into the gram level synthesis of a plasmonic photocatalyst from one pot but also its application in waste water treatment through the degradation of toxic dye molecules upon direct sunlight exposure.

Graphical abstract: A one pot synthesis of Au–ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2014
Accepted
07 Apr 2014
First published
08 Apr 2014

New J. Chem., 2014,38, 2999-3005

A one pot synthesis of Au–ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity

C. Mondal, J. Pal, M. Ganguly, A. K. Sinha, J. Jana and T. Pal, New J. Chem., 2014, 38, 2999 DOI: 10.1039/C4NJ00227J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements