Issue 12, 2014

Identifying the potential extracellular electron transfer pathways from a c-type cytochrome network

Abstract

Extracellular electron transfer (EET) is the key feature of some bacteria, such as Geobacter sulfurreducens and Shewanella oneidensis. Via EET processes, these bacteria can grow on electrode surfaces and make current output of microbial fuel cells. c-Type cytochromes can be used as carriers to transfer electrons, which play an important role in EET processes. Typically, from the inner (cytoplasmic) membrane through the periplasm to the outer membrane, they could form EET pathways. Recent studies suggest that a group of c-type cytochromes could form a network which extended the well-known EET pathways. We obtained the protein interaction information for all 41 c-type cytochromes in Shewanella oneidensis MR-1, constructed a large-scale protein interaction network, and studied its structural characteristics and functional significance. Centrality analysis has identified the top 10 key proteins of the network, and 7 of them are associated with electricity production in the bacteria, which suggests that the ability of Shewanella oneidensis MR-1 to produce electricity might be derived from the unique structure of the c-type cytochrome network. By modularity analysis, we obtained 5 modules from the network. The subcellular localization study has shown that the proteins in these modules all have diversiform cellular compartments, which reflects their potential to form EET pathways. In particular, combination of protein subcellular localization and operon analysis, the well-known and new candidate EET pathways are obtained from the Mtr-like module, indicating that potential EET pathways could be obtained from such a c-type cytochrome network.

Graphical abstract: Identifying the potential extracellular electron transfer pathways from a c-type cytochrome network

Article information

Article type
Paper
Submitted
01 Jul 2014
Accepted
02 Sep 2014
First published
02 Sep 2014

Mol. BioSyst., 2014,10, 3138-3146

Author version available

Identifying the potential extracellular electron transfer pathways from a c-type cytochrome network

D. Ding, J. Xu, L. Li, J. Xie and X. Sun, Mol. BioSyst., 2014, 10, 3138 DOI: 10.1039/C4MB00386A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements