Issue 7, 2014

NMR- and MS-based metabolomics: various organ responses following naphthalene intervention

Abstract

Naphthalene, a polycyclic aromatic hydrocarbon, is a ubiquitous environmental pollutant capable of causing illness. In this study, we deconvoluted the metabolites related to naphthalene intervention in various organs by using nuclear magnetic resonance (NMR) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Male ICR mice were intraperitoneally dosed with olive oil (vehicle), and a low dose and a high dose (100 and 200 mg kg−1 body wt, respectively) of naphthalene. After 48 h, the lungs, liver, and kidneys were collected for analysing the metabolic responses. The metabolites were extracted and non-targeted profiled using NMR. Low NMR resolution limited the identification of the hydrophobic metabolites. Therefore, LC-MS/MS-based focus lipidomics was applied to profile phosphorylcholine-containing lipids and sphingolipids. Chemometric analysis revealed that succinate and lactate were significantly increased in the lungs, suggesting that energy metabolisms and antioxidation were increased following naphthalene treatment. In the liver, anti-oxidative stress-related metabolites increased, enabling the oxidative stress during naphthalene biotransformation and detoxification to be overcome. The elevation of glutathione protected kidneys from reactive-naphthalene-metabolite-induced injury. Significant alteration of hydrophobic metabolites (membrane constituents) revealed lung and liver were the target organs of naphthalene treatment. MS data demonstrated that phosphatidylcholine (PC) and ceramide species were significantly altered in the lungs and liver, whereas only PC was observed in the kidneys. Elevated numbers of unsaturated bonds and fatty acyl chains in both ceramides and PCs were determined to reduce cellular membrane rigidity and facilitating the trafficking of recovery elements into the cell for rejuvenation. To conclude, the complementary results of NMR- and MS-based metabolomics enabled the characterization of naphthalene-induced changes in various organs.

Graphical abstract: NMR- and MS-based metabolomics: various organ responses following naphthalene intervention

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2014
Accepted
28 Apr 2014
First published
29 Apr 2014

Mol. BioSyst., 2014,10, 1918-1931

NMR- and MS-based metabolomics: various organ responses following naphthalene intervention

Y. S. Ling, H. Liang, M. Chung, M. Lin and C. Lin, Mol. BioSyst., 2014, 10, 1918 DOI: 10.1039/C4MB00090K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements