Issue 2, 2014

Chip-on-foil devices for DNA analysis based on inkjet-printed silver electrodes

Abstract

For a rapid on-site diagnosis of pathogens, low-cost chip-based devices are of great interest. Here, we report the successful fabrication of inkjet printed silver electrodes on polymer foils as disposable chips for molecular DNA analytics. In order to manufacture these electrode structures, silver nanoparticle inks were inkjet printed onto planar polypropylene substrates. Due to the low thermal stability of the foils, substrate preserving sintering techniques, including low temperature thermal sintering and low pressure argon plasma sintering, were implemented. Thus, sufficient electrical conductance of the printed structures at processing temperatures ≤100 °C was achieved. To test the applicability of the manufactured chips, specific capture DNA was immobilized within the gaps of the conductive electrode paths and hybridized in the next step with biotin-labeled target DNA. Subsequently, an enzymatically generated silver nanoparticle deposition was induced that bridges the electrode gap. This enabled both conductance measurement and gray value analysis as a fast, simple and robust electrical and optical read-out system. The proof-of-principle experiments successfully demonstrated the applicability of these convenient chip-on-foil devices for nucleic acid based pathogen detection.

Graphical abstract: Chip-on-foil devices for DNA analysis based on inkjet-printed silver electrodes

Supplementary files

Article information

Article type
Paper
Submitted
28 Jul 2013
Accepted
28 Oct 2013
First published
29 Oct 2013

Lab Chip, 2014,14, 392-401

Chip-on-foil devices for DNA analysis based on inkjet-printed silver electrodes

S. Wünscher, B. Seise, D. Pretzel, S. Pollok, J. Perelaer, K. Weber, J. Popp and U. S. Schubert, Lab Chip, 2014, 14, 392 DOI: 10.1039/C3LC50886B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements