Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement
Abstract
To improve the detection sensitivity of vanadium (V) and manganese (Mn) elements in steel using laser-induced breakdown spectroscopy (LIBS), a ring magnet was employed to spatially and magnetically confine plasmas produced from steel samples using an Nd:YAG laser. The results showed that the optical emission and signal-to-noise ratios (SNRs) for both V I 437.92 nm and Mn I 403.08 nm lines were enhanced by the ring-magnet confinement. The enhancements were found to be due to an increase in the plasma temperature and electron density as a result of both spatial and magnetic confinement. The calibration curves of V I 437.92 nm and Mn I 403.08 nm with/without confinement were established. The 3σ-limits of detection (LoDs) for V and Mn in steels were 11 and 30 ppm with the ring magnet, lower than the 18 and 41 ppm with a degaussed magnet and the 41 and 56 ppm in open air, respectively.