Volume 170, 2014

Mechanically induced silyl ester cleavage under acidic conditions investigated by AFM-based single-molecule force spectroscopy in the force-ramp mode

Abstract

AFM-based dynamic single-molecule force spectroscopy was used to stretch carboxymethylated amylose (CMA) polymers, which have been covalently tethered between a silanized glass substrate and a silanized AFM tip via acid-catalyzed ester condensation at pH 2.0. Rupture forces were measured as a function of temperature and force loading rate in the force-ramp mode. The data exhibit significant statistical scattering, which is fitted with a maximum likelihood estimation (MLE) algorithm. Bond rupture is described with a Morse potential based Arrhenius kinetics model. The fit yields a bond dissociation energy De = 35 kJ mol−1 and an Arrhenius pre-factor A = 6.6 × 104 s−1. The bond dissociation energy is consistent with previous experiments under identical conditions, where the force-clamp mode was employed. However, the bi-exponential decay kinetics, which the force-clamp results unambiguously revealed, are not evident in the force-ramp data. While it is possible to fit the force-ramp data with a bi-exponential model, the fit parameters differ from the force-clamp experiments. Overall, single-molecule force spectroscopy in the force-ramp mode yields data whose information content is more limited than force-clamp data. It may, however, still be necessary and advantageous to perform force-ramp experiments. The number of successful events is often higher in the force-ramp mode, and competing reaction pathways may make force-clamp experiments impossible.

Article information

Article type
Paper
Submitted
04 Dec 2013
Accepted
17 Jan 2014
First published
21 Jan 2014

Faraday Discuss., 2014,170, 357-367

Author version available

Mechanically induced silyl ester cleavage under acidic conditions investigated by AFM-based single-molecule force spectroscopy in the force-ramp mode

S. W. Schmidt, M. F. Pill, A. Kersch, H. Clausen-Schaumann and M. K. Beyer, Faraday Discuss., 2014, 170, 357 DOI: 10.1039/C3FD00119A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements