Issue 3, 2014

Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system

Abstract

To understand the formation and release behavior of iron corrosion products in a drinking water distribution system, annular reactors (ARs) were used to investigate the development processes of corrosion products and biofilm community as well as the concomitant iron release behavior. Results showed that the formation and transformation of corrosion products and bacterial community are closely related to each other. The presence of sulfate-reducing bacteria (SRB, e.g. Desulfovibrio and Desulfotomaculum), sulfur-oxidizing bacteria (SOB, e.g. Sulfuricella), and iron-oxidizing bacteria (IOB, e.g. Acidovorax, Gallionella, Leptothrix, and Sphaerotilus) in biofilms could speed up iron corrosion; however, iron-reducing bacteria (IRB, e.g. Bacillus, Clostridium, and Pseudomonas) could inhibit iron corrosion and iron release. Corrosion scales on iron coupons could develop into a two-layered structure (top layer and inner layer) with time. The relatively stable constituents such as goethite (α-FeOOH) and magnetite (Fe3O4) mainly existed in the top layers, while green rust (Fe6(OH)12CO3) mainly existed in the inner layers. The IOB (especially Acidovorax) contributed to the formation of α-FeOOH, while IRB and the anaerobic conditions could facilitate the formation of Fe3O4. Compared with the AR test without biofilms, the iron corrosion rate with biofilms was relatively higher (p < 0.05) during the whole experimental period, but the iron release with biofilms was obviously lower both at the initial stage and after 3 months. Biofilm and corrosion scale samples formed under different water supply conditions in an actual drinking water distribution system verified the relationships between the bacterial community and corrosion products.

Graphical abstract: Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2013
Accepted
07 Jan 2014
First published
08 Jan 2014

Environ. Sci.: Processes Impacts, 2014,16, 576-585

Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system

H. Sun, B. Shi, D. A. Lytle, Y. Bai and D. Wang, Environ. Sci.: Processes Impacts, 2014, 16, 576 DOI: 10.1039/C3EM00544E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements