Fabrication of Fe3O4@SiO2@TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation
Abstract
A quaternary nanocomposite Fe3O4@SiO2@TiO2/graphene oxide (GO) was for the first time successfully synthesized in this work for the repeated use in simultaneous adsorption and photocatalytic degradation of aromatically structured chemical pollutants. The resulting sample was characterized by TEM, XRD, FTIR, TG-DTG, XPS, PL, and VSM. Its photocatalytic activity was evaluated in the photocatalytic degradation of rhodamine B (RhB) under high-pressure mercury lamp irradiation. The results showed that about 63% of RhB was absorbed onto the prepared Fe3O4@SiO2@TiO2/GO nanocomposites by just 30 minute mixing, and after 120 min high-pressure mercury lamp irradiation, about 92.03% of RhB was converted. The photocatalytic degradation followed pseudo first-order reaction with an apparent rate constant of 0.0136 min−1. Compared with the Fe3O4@SiO2@TiO2 nanoparticles, it exhibits an excellent ability to adsorb aromatic compounds via π–π stacking and a higher photocatalytic activity due to the presence of GO. In addition, the synthesized nanomaterial exhibited good magnetic response and the reusability study suggested that the prepared nanocomposites were stable enough and maintained high degradation rate and catalyst recovery even after five cycles, verifying their potential application in water purification.