Issue 33, 2014

Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light

Abstract

Graphitic carbon nitride (g-C3N4) was hybridized with CdS nanoparticles and reduced graphene oxide (RGO) sheets using a facile chemical method, for the application of catalytic photodegradation of Rhodamine B and Congo red dyes under irradiation with UV and visible light. Fourier-transform infrared (FTIR) spectroscopy and X-ray photoemission spectroscopy (XPS) analyses confirmed the formation of pure g-C3N4, as well as g-C3N4/CdS, g-C3N4/RGO, and g-C3N4/CdS/RGO composites. The large surface area of the g-C3N4/CdS/RGO composite (70.42 m2 g−1) resulted in rapid dye adsorption onto the surface of the photocatalyst, leading to effective photodegradation of organic pollutants. The addition of CdS and RGO increased the photocatalytic activity of g-C3N4 by a factor of approximately twenty compared with that of the commercially available TiO2 catalyst under visible light, and the g-C3N4/CdS/RGO composite was found to significantly enhance the catalytic effect compared with pure g-C3N4 and with the g-C3N4/CdS and g-C3N4/RGO composites. The superior photocatalytic activity of the g-C3N4/CdS/RGO composite is attributed to enhanced separation of the photogenerated electron–hole pairs, as well as increased visible-light absorption. The improved transport of photoelectrons was consistent with the results of transient photocurrent measurements. Therefore, g-C3N4/CdS/RGO composites using a facile method are applicable to the development of high-efficiency photocatalytic devices for industrial applications.

Graphical abstract: Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light

Supplementary files

Article information

Article type
Paper
Submitted
30 Apr 2014
Accepted
23 Jun 2014
First published
23 Jun 2014

Dalton Trans., 2014,43, 12514-12527

Author version available

Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light

R. C. Pawar, V. Khare and C. S. Lee, Dalton Trans., 2014, 43, 12514 DOI: 10.1039/C4DT01278J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements