Efficient and versatile catalysis of N-alkylation of heterocyclic amines with alcohols and one-pot synthesis of 2-aryl substituted benzazoles with newly designed ruthenium(ii) complexes of PNS thiosemicarbazones†
Abstract
Ruthenium(II) carbonyl complexes with phosphine-functionalized PNS type thiosemicarbazone ligands [RuCl(CO)(EPh3)(L)] (1–6) (E = P or As, L = 2-(2-(diphenylphosphino)benzylidene) thiosemicarbazone (PNS-H), 2-(2-(diphenylphosphino)benzylidene)-N-methylthiosemicarbazone (PNS-Me), 2-(2-(diphenylphosphino)benzylidene)-N-phenylthiosemicarbazone (PNS-Ph)) have been synthesized and characterized by elemental analysis and spectroscopy (IR, UV-Vis, 1H, 13C, 31P-NMR) as well as ESI mass spectrometry. The molecular structures of complexes 1, 2 and 6 were identified by means of single-crystal X-ray diffraction analysis. The analysis revealed that all the complexes possess a distorted octahedral geometry with the ligand coordinating in a uni-negative tridentate PNS fashion. All the ruthenium complexes (1–6) were tested as catalyst for N-alkylation of heteroaromatic amines with alcohols. Notably, complex 2 was found to be a very efficient and versatile catalyst towards N-alkylation of a wide range of heterocyclic amines with alcohols. Complex 2 can also catalyze the direct amination of 2-nitropyridine with benzyl alcohol to the corresponding secondary amine. Furthermore, a preliminary examination of performance for N,N-dialkylation of diamine showed promising results, giving good conversion and high selectivity. In addition, N-alkylation of ortho-substituted anilines (–NH2, –OH and –SH) led to the one-pot synthesis of 2-aryl substituted benzimidazoles, benzoxazoles and benzothiazoles, also revealing the catalytic activity of complex 2.