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Probing the type of anomalous diffusion with
single-particle tracking

Dominique Ernst,a Jürgen Köhler*a and Matthias Weiss*b

Many reactions in complex fluids, e.g. signaling cascades in the cyto-

plasm of living cells, are governed by a diffusion-driven encounter of

reactants. Yet, diffusion in complex fluids often exhibits an anomalous

characteristic (‘subdiffusion’). Since different types of subdiffusion have

distinct effects on timing and equilibria of chemical reactions, a thorough

determination of the reactants’ type of random walk is key to a

quantitative understanding of reactions in complex fluids. Here we

introduce a straightforward and simple approach for determining the

type of subdiffusion from single-particle tracking data. Unlike previous

approaches, our method also is sensitive to transient subdiffusion

phenomena, e.g. obstructed diffusion below the percolation threshold.

We validate our strategy with data from experiment and simulation.

Introduction

A wide class of reactions in complex fluids, e.g. signaling cascades
and protein complex formation in the cytoplasm of living cells, are
governed by a diffusion-mediated encounter. For diffusion-limited
reactions in three dimensions, a constant reaction rate k B Dr in
terms of the reactants’ relative diffusion constant Dr was derived by
Smoluchowski as early as 1916.1 Yet, this famous result becomes
invalid if fluids have viscoelastic characteristics or if the accessible
space in the fluid has a fractal dimension: under these circum-
stances the reactants’ random walk becomes compact, and a
proper reaction constant cannot be defined any more.2 Indeed,
Smoluchowski’s construction crucially relies on the fact that normal
diffusion (Brownian motion) features a two-dimensional random
walk so that motion in three-dimensional bulk fluids is non-
compact. However, diffusion in viscoelastic fluids or in porous media
may be governed by compact random walks and, as a consequence,
the reaction coefficient k may become time-dependent.3,4

Random walks are commonly evaluated by inspecting
the mean square displacement (MSD) of molecules. For normal

Brownian diffusion MSD B Dt, whereas diffusion in viscoelastic
media or in fractal geometries (e.g. percolation clusters) typically
shows a sublinear scaling, MSD B Gta (ao 1, ‘subdiffusion’) with a
generalized diffusion coefficient G. Diffusion anomalies have been
observed in many complex fluids with a high concentration of
macromolecules (‘crowders’), e.g. in living cells5–12 or in artificial
fluids.13–17 Defining subdiffusion via the MSD’s scaling, however,
does not reveal the molecules’ type of random walk that may feature
distinct consequences on chemical reactions.

As of yet, three general types of subdiffusive random walks
have been invoked to explain experimental observations of
subdiffusion in complex/crowded fluids. Despite a common
sublinear scaling of the MSD, they describe very different
physical scenarios with quite different effects on chemical
reactions. Here, we only give a brief overview and refer the
reader for details to a very recent and extensive review by
Höfling and Franosch.18

The first model relies on hindering free diffusion by randomly
placing immobile obstacles in space (obstructed diffusion, OD). If
the density of obstacles approaches the percolation threshold,
tracer particles are forced to move in a fractal subspace which
is reflected in a transient subdiffusion over several orders of
magnitude in time.19 At the percolation threshold, a single
scale-free cluster of obstacles emerges, and subdiffusion is seen
on all time-scales.19 In two dimensions, the anomaly is then
aE 0.69, and fractal reaction kinetics are required to adequately
describe chemical reactions.3,20

The second model violates the Markovian property of normal
Brownian motion in that successive steps are anti-correlated. This
so-called fractional Brownian motion (FBM) models a particle’s
motion in viscoelastic fluids,18 and reactions may show significant
changes due to an enhanced rebinding of reactants.4,21 Please
note that FBM in general also allows for correlated steps that lead
to superdiffusion (not considered here).

The third model is based on assigning power-law distributed
waiting times to a particle between periods of free Brownian
motion (continuous time random walk, CTRW).22 If the normal-
izable distribution of waiting times has a divergent mean and

a Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany.

E-mail: juergen.koehler@uni-bayreuth.de
b Experimental Physics I, University of Bayreuth, 95440 Bayreuth, Germany.

E-mail: matthias.weiss@uni-bayreuth.de

Received 20th January 2014,
Accepted 5th March 2014

DOI: 10.1039/c4cp00292j

www.rsc.org/pccp

PCCP

COMMUNICATION

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ar
ch

 2
01

4.
 D

ow
nl

oa
de

d 
on

 1
0/

16
/2

02
4 

3:
40

:5
8 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/C4CP00292J
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP016017


This journal is© the Owner Societies 2014 Phys. Chem. Chem. Phys., 2014, 16, 7686--7691 | 7687

divergent higher moments, subdiffusion can be observed over
extended time scales. The more time has elapsed since starting
an ensemble of tracers, the more particles have been assigned
extraordinary long waiting times, and as a consequence more
and more particles become immobilized. This aging effect, i.e.
an increasing amount of ‘frozen’ particles, and the associated
subdiffusive spreading is a property of the ensemble. In contrast,
the time-averaged MSD of a single tracer particle shows no signs
of anomalous diffusion.23,24 This discrepancy between single
particles and an ensemble has been named weak ergodicity
breaking and distinct effects on reactions are to be expected here
(see, e.g., ref. 18 and 25 for an introduction).

Given these different types of subdiffusion and their distinct
impact on chemical reactions, it is clear that elucidating the
type of random walk of nanometer-sized objects is key for a
quantitative understanding of reactions in crowded/complex
fluids. Several reports have touched on this issue before by
exploiting statistical features of the recorded random walk
beyond the scaling of the MSD.17,26–32 Yet, a conclusive test
that can be applied quickly to individual experimental trajectories
while being capable of reporting also on the nature of transient
subdiffusion phenomena has been lacking so far. In fact, most
tests even have been limited to separating CTRW-like random
walks from stochastic processes with a stationary distribution of
increments like OD or FBM.

Here, we introduce a straightforward yet decisive test for the type
of subdiffusive random walk in complex fluids from single-particle
trajectories. Validating our approach with experimental trajectories
obtained for nanobeads diffusing in complex fluids and simulations
on transient subdiffusion of the OD type, we find that our approach
is particularly more sensitive in reporting on transient sub-
diffusion phenomena than previously considered methods.

Materials and methods

Single particle tracking of fluorescent beads in sucrose and dextran
solutions was done as described earlier.33,34 In brief, a cycling-orbit
strategy35 was used to follow the center of mass of fluorescent
nanobeads (diameter 20 nm), i.e. the diffusive motion of the bead
was detected by changes in the fluorescence amplitude and phase.
The diffusive motion was compensated by a piezo element. This
setup allowed for a spatiotemporal resolution of trajectories in the
4 ms/10 nm range and trajectories of 4105 positions could be
recorded. We would like to note that the bead is only twofold larger
than apoferritin, a cellular protein complex that has been studied in
crowded media before.15 Moreover, a cycling-orbit tracking strategy
can, in principle, also be applied to smaller beads. A too rapid
diffusion and bleaching, however, may limit the number of recorded
photons per time, hence increasing the positional uncertainty.

Simulations of obstructed diffusion were performed on a two-
dimensional square lattice (2000 � 2000 sites, periodic boundaries)
using the blind ant algorithm: at each step, the particle blindly
attempts to move to one of the four next-neighbor sites, and the
move is accepted unless the site is blocked by an obstacle.
A fraction 0 r f r 0.35 of randomly chosen lattice sites

was made inaccessible for random walkers, hence leading to
transient subdiffusion. To meet the scales of the experiment,
the lattice constant was chosen as Dx = 10 nm and the free
diffusion constant was set to D0 = 1 mm2 s�1. Particle positions
were recorded every 4 ms, and trajectories of 105 positions were
acquired for each particle. For each value of f = 0, 0.2, 0.35, 20
random obstacle configurations with a single diffusing particle
were chosen to obtain 20 trajectories for each condition.
Simulations therefore had comparable length and time scales
and similar statistics as our experimental data. While increasing
the number of trajectories certainly will enhance the statistics,
we have refrained from doing so to have the same statistical
fluctuations as seen in the experimental data.

Results

In order to highlight its applied nature, we outline our test for
the type of subdiffusion by directly applying it to experimental
single-particle tracking data recorded in sucrose and dextran
solutions. We have shown previously that these data are governed
by normal and fractional Brownian motion, respectively.17,36

In order to determine the type of subdiffusive random walk, one
first needs to separate diffusion processes with stationary distribu-
tions of increments (e.g. OD and FBM) vs. those with nonstationary
distributions (e.g. CTRW). Given that a CTRW-type of motion is
related to an ageing process, one may employ the recently reported
emergence of a weak ergodicity breaking23,24 for this: for CTRW-like
random walks, the ensemble-averaged MSD shows a diffusion
anomaly ao 1 whereas the time-averaged MSD of single trajectories
follows the scaling of a normal Brownian motion (a = 1). The
ensemble-averaged MSD of j = 1,. . .,M trajectories is defined as

rðtÞ2
D E

e
¼ 1

N

XM
j¼1

rjðtÞ � rjðt ¼ 0Þ
� �2

; (1)

while the time-averaged MSD of a single trajectory with N positions
and a temporal resolution Dt reads

rðtÞ2
D E

t
¼ 1

N � k

XN�k
i¼1

ri � riþkð Þ2: (2)

Here, ri = r(t = iDt) and t = kDt. If one observes hr(t)2it B ta with a
significant a o 1 over at least one decade, one can hence infer that
particles undergo an anomalous diffusion that is not of the CTRW
type. Alternative measures like the mean-maximal excursion
method28 or the so-called p-variation method26 may be engaged as
a somewhat more sophisticated means to further support this
conclusion. The latter, however, may have only limited significance
for noisy data.37,38

When evaluating the time-averaged MSD, one needs to infer
the degree of anomaly on the time scales of interest. A straight-
forward approach to reveal the local diffusion anomaly value is
given by the MSD’s logarithmic derivative:

aðtÞ ¼
d ln rðtÞ2

D E
t

� �

d lnðtÞ : (3)
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Evaluating this expression for experimental MSDs, however, is
plagued by strong numerical fluctuations. In order to avoid
these spurious features, we smoothed each experimental MSD
curve by fitting it with an eight-order polynomial. Polynomials
of lower order deviated significantly from the experimental
MSD at very small and very large times, whereas higher-order
polynomials did not yield a significant improvement for deter-
mining the local anomaly. Using the fit parameters, we then
calculated the analytical derivative of eqn (3). This approach
yielded smoothly varying results for a(t) (see representative
curves in Fig. 1).

In agreement with our previous results on the same trajec-
tories,17,36 a(t) reported a vanishing diffusion anomaly, i.e. a E 1,
for large time scales for the motion of nanobeads in sucrose
solutions (Fig. 1b). A slight superdiffusive signature for small times
is due to inertial and statistical effects: Compensating for the
particle’s motion by moving the piezo element required a relaxation
to the resting state. This contributed a non-diffusive signal to the

MSD on the scale of few milliseconds.17 In addition, the unavoidable
motion of particles during photon acquisition, i.e. position determi-
nation, adds a negative constant to the MSD that imitates a super-
diffusive motion on short time scales (see ref. 39 for details).

In contrast, diffusion in dextran solutions was clearly sub-
diffusive for small times as judged on the basis of a(t) (Fig. 1b).
For about one order of magnitude, the anomaly value was
significantly lower than unity, while a(t) converged towards
unity for large time scales. This result is in favorable agreement
with earlier observations on subdiffusion of nano-particles in
dextran solutions.6,14,15 Given that a(t) reports a subdiffusive
characteristic in the time-averaged MSD, trajectories taken in
crowded dextran fluids cannot be a consequence of a CTRW-like
random walk. In fact, we have shown earlier that the very same
trajectories have all the features of FBM.36 Thus, inspecting the
time-averaged MSD indeed yields a first test of whether random
walk models with stationary or non-stationary increment
distributions are to be considered.

To probe which random walk model with a stationary
increment distribution might underlie single-particle tracking
data, we quantify the trajectory’s Gaussianity via

gðtÞ ¼
2 rðtÞ4
D E

t

3 rðtÞ2
D E

t

2
� 1 (4)

with the trajectory’s quartic moment

rðtÞ4
D E

t
¼ 1

N � k

XN�k
i¼1

ri � riþkð Þ4: (5)

For normal Brownian motion, and more general for any ran-
dom walk with a Gaussian statistics of increments (e.g. FBM),
the Gaussianity g(t) should be strictly zero, whereas significant
deviations from zero are expected for other diffusion models.18

Indeed, in line with our previous results17,36 we observed g(t) E 0
for our experimental trajectories in sucrose and dextran solutions
(Fig. 2a). This result further underlines that subdiffusive trajectories
in dextran solutions are due to Gaussian random walks (here: FBM).

To crosscheck the information on the type of random walk
delivered by the Gaussianity, we inspected the scaling of a
recently introduced quantity:31

h(t) = s(t)/hr(t)2it B td. (6)

Here, s(t) is the number of distinct sites visited within a
period t, while the denominator is simply the time-averaged
MSD. Due to different scaling laws of s(t) for different types of
random walks, d = 0 was predicted for FBM, whereas d o 0 for
OD. Indeed, our experimental data are consistent with a scaling
exponent d = 0 (Fig. 2b), hence confirming the conclusions
drawn from the Gaussianity.

Despite the favorable agreement between both approaches,
we would like to highlight the advantages of an analysis in
terms of the Gaussianity over the scaling approach [eqn (6)].
First of all, our approach does not require to specify and to vary
a box size for coarse graining. Briefly, for the scaling approach
coarse graining is needed for defining the number of distinct

Fig. 1 (a) Representative time-averaged MSD curves [eqn (2)] of single
trajectories of nanobeads diffusing in solutions containing 60% sucrose
(circles) or 30% dextran (squares). Full red lines are best fits of an 8th order
polynomial. Fitting the MSD in the grey-shaded region (50–500 ms
in accordance with our previous evaluation17) revealed an anomalous
diffusion for dextran (a E 0.76) but not for sucrose solutions (a E 1).
Dashed lines indicate the respective scaling. (b) Local diffusion anomaly
[eqn (3)] for the same curves as determined via the polynomial fit (symbols
as before). Full lines represent the mean anomaly (averaged over 21
trajectories) for sucrose (black) and dextran (red) solutions. Dash-dotted
lines indicate the corresponding standard deviation of the mean. After an
apparent superdiffusion due to inertial and statistical effects (cf. main text),
a E 1 for sucrose solutions. For dextran solutions, however, a clear
subdiffusive regime is visible (a E 0.8, grey shaded region) that converges
asymptotically towards normal diffusion.
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vistited sites, s(t), of a trajectory segment of (temporal) length t.
The most straightforward approach is to superimpose the
trajectory with square boxes of edge length e, and to count
the number of non-empty boxes (= distinct visited sites), N(e). If
e is too small, then each position of the trajectory will have its
‘own’ site, whereas a too large e masks local features of the
random walk. Both extremes are unfavorable for s(t). As a
matter of fact, the quantity N(e) is the central quantity of a
box-counting algorithm with which one can estimate the fractal
dimension df of an object via the scaling N(e) B 1/edf. Yet, N(e)
does not show a unique scaling for typical experimental trajec-
tories (Fig. 3), i.e. the value of df depends on the choice of the
box size e. As the scaling exponent d in eqn (6) depends crucially
on df,

31 the choice of e is crucial for a proper analysis. Being
aware of this, the authors of ref. 31 therefore proposed to vary
the trajectory’s coarse graining via e to reveal the smallest d
possible for the trajectory, which, however, makes the analysis
of experimental data considerably more laborious.

A second and more severe problem of the scaling approach
is its intrinsic insensitivity to transient subdiffusion phenomena.
Given that a proper determination of d requires determination of
the scaling of h(t), d-values are only meaningful when being
extracted/averaged over at least one order of magnitude in time.
Thus, transient and incomplete subdiffusion phenomena may
be missed. To highlight this sensitive point, we have performed

simulations of obstructed diffusion with f = 0, 0.2, 0.35. While
f = 0 represents free diffusion, f = 0.2 and f = 0.35 represent an
OD scenario that is well below the percolation threshold, i.e. only
a weak and transient subdiffusion can emerge.19

As expected, evaluation of the temporal anomaly a(t) [eqn (3)]
revealed no significant subdiffusion for f = 0. Also for f = 0.2 no
significant subdiffusion was visible, whereas a considerable transient
anomaly is seen for f = 0.35 (Fig. 4a). Evaluation of g(t) clearly
marked the free Brownian motion at f = 0 as a Gaussian process
whereas f = 0.35 is clearly detected as a non-Gaussian process on
short time scales (Fig. 4b). Even the random walk at f = 0.2, albeit
not showing a significant subdiffusion, is highlighted as a transient
non-Gaussian process. This result clearly demonstrates the sensitiv-
ity of g(t) for transient and even incomplete subdiffusion processes.
In contrast, the scaling of h(t) did not show major changes when
inreasing the obstacle fraction from f = 0 to f = 0.2 or f = 0.35
(Fig. 4c). This result underlines that the scaling of h(t) may be a
good measure for asymptotic subdiffusion processes whereas
transient subdiffusion, maybe even combined with experi-
mental noise, may not be detected. The Gaussianity, however,
is a straightforward and sensitive quantity that can report on
transient anomalous diffusion.

As a result of the above, we propose the following three-step
protocol to uncover the anomalous random walk model from
single-particle tracking data:

1. Check if the ensemble-averaged MSD [eqn (1)] deviates
significantly from normal diffusion. If a subdiffusive character-
istics, i.e. a o 1, is seen you can proceed with the next step.

2. Check if a(t) [eqn (3)] of the time-averaged MSD [eqn (2)]
shows subdiffusion. If a significant anomaly is visible then
particles most likely do not undergo a CTRW and you can
proceed with the next step. If a(t) E 1, a CTRW may be the most
meaningful model for the particles’ random walk.

Fig. 2 (a) The Gaussianty g(t) [eqn (4)] fluctuates around zero for trajectories
measured in sucrose (black) and dextran fluids (red). Hence, both data sets are
due to Gaussian random walks. Symbols refer to the representative trajectories
shown in Fig. 1 a, full lines are the mean of 21 trajectories, and dash-dotted lines
indicate the corresponding standard deviation of the mean. (b) As expected
from the Gaussianity, h(t) [eqn (6)] is essentially constant in time (d = 0) for
trajectories in sucrose (black) and dextran fluids (red). Symbols and lines as
before.

Fig. 3 The number of boxes with edge length e that are visited at least
once by trajectories in sucrose (circles) and dextran solutions (squares)
show an asymptotic approach to the anticipated scaling N(e) B 1/e2

(dashed line) for small e. Yet, the apparent scaling exponent varies con-
siderably as a function of e (highlighted in more detail in the inset by
dividing out the leading order). Thus, the scaling of the number of distinct
visited sites that enters h(t) depends strongly on the coarse graining of the
trajectory. See main text for more details.
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3. Calculate the trajectory’s Gaussianity [eqn (4)]. If g(t) E 0
then FBM is the most reasonable model, whereas positive
values are a signature for obstructed diffusion.

Notably, for the case of mixed processes, e.g. CTRW in combi-
nation with OD40 or with FBM,12 a non-zero value of the Gaussianity
due to the CTRW contribution is anticipated at least asympotically.18

The contribution of OD will then be superimposed on smaller time
scales. However, a CTRW contribution will already be highlighted
during the second point in the above to-do list. Given that diffusion
processes with spatially smoothly varying diffusion constants41

or spatio-temporally changing temperature fields42 are in part
reminiscent of a CTRW process,41 it is likely that only small
modifications will be needed in the above approach to also
clearly report on such processes.

In summary, we have proposed and conducted here a quick
and versatile test for the type of subdiffusion that does not
involve complex data handling. As seen above, our approach
can even reveal transient and incomplete types of subdiffusive
random walks within a few, easy steps. We therefore suggest this
test as a helpful toolbox especially for evaluating experimental
single-particle tracking data.
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