Issue 14, 2014

From structure to function: the convergence of structure based models and co-evolutionary information

Abstract

Understanding protein folding and function is one of the most important problems in biological research. Energy landscape theory and the folding funnel concept have provided a framework to investigate the mechanisms associated to these processes. Since protein energy landscapes are in most cases minimally frustrated, structure based models (SMBs) have successfully determined the geometrical features associated with folding and functional transitions. However, structural information is limited, particularly with respect to different functional configurations. This is a major limitation for SBMs. Alternatively, statistical methods to study amino acid co-evolution provide information on residue–residue interactions useful for the study of structure and function. Here, we show how the combination of these two methods gives rise to a novel way to investigate the mechanisms associated with folding and function. We use this methodology to explore the mechanistic aspects of protein translocation in the integral membrane protease FtsH. Dual basin-SBM simulations using the open and closed state of this hexameric motor reveals a functionally important paddling motion in the catalytic cycle. We also find that Direct Coupling Analysis (DCA) predicts physical contacts between AAA and peptidase domains of the motor, which are crucial for the open to close transition. Our combined method, which uses structural information from the open state experimental structure and co-evolutionary couplings, suggests that this methodology can be used to explore the functional landscape of complex biological macromolecules previously inaccessible to methods dependent on experimental structural information. This efficient way to sample the conformational space of large systems creates a theoretical/computational framework capable of better characterizing the functional landscape in large biomolecular assemblies.

Graphical abstract: From structure to function: the convergence of structure based models and co-evolutionary information

Article information

Article type
Paper
Submitted
14 Dec 2013
Accepted
10 Feb 2014
First published
07 Mar 2014

Phys. Chem. Chem. Phys., 2014,16, 6496-6507

Author version available

From structure to function: the convergence of structure based models and co-evolutionary information

B. Jana, F. Morcos and J. N. Onuchic, Phys. Chem. Chem. Phys., 2014, 16, 6496 DOI: 10.1039/C3CP55275F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements