Issue 22, 2014

A family of three magnetic metal organic frameworks: their synthesis, structural, magnetic and vapour adsorption study

Abstract

Three flexible metal–organic frameworks (MOFs) based on aldrithiol linker and pyromellitate ligand, namely, [Co(aldrithiol)(pyromellitate)0.5(H2O)2]n (1), [Ni2(aldrithiol)2(pyromellitate)(H2O)2]n·2n(C2H5OH)·11n(H2O) (2) and [Cu(aldrithiol)2(pyromellitate)]n·2n(H2O) (3) have been synthesized through slow diffusion technique and characterized by structural, magnetic and adsorption studies. Single crystal X-ray studies show that compounds 1 and 3 have two-dimensional layered structures, whereas compound 2 adopts a three-dimensional framework structure. The observed dimensionality change might be due to the different orientation of pyridine rings in the flexible aldrithiol linker and versatile bridging modes of the pyromellitate ligand. In 1 and 2, the pyromellitate ligand coordinates to the metal centre in a monodentate fashion {(κ1)-(κ1)-(κ1)-(κ1)-μ4} and in 3, it coordinates in {(κ1)-(κ1)-μ2} fashion. The magnetic properties of 1–3 were investigated in detail and show weak antiferromagnetic coupling among the metal centres. Vapour sorption studies reveal that compounds 1 and 3 show high methanol vapour uptake, whereas compound 2 shows a decent amount of H2O adsorption. The dehydrated frameworks of 1–3 regenerate the as-synthesized framework structures upon exposure to water vapour.

Graphical abstract: A family of three magnetic metal organic frameworks: their synthesis, structural, magnetic and vapour adsorption study

Supplementary files

Article information

Article type
Paper
Submitted
02 Dec 2013
Accepted
14 Jan 2014
First published
14 Jan 2014

CrystEngComm, 2014,16, 4742-4752

Author version available

A family of three magnetic metal organic frameworks: their synthesis, structural, magnetic and vapour adsorption study

S. Sanda, S. Goswami, H. S. Jena, S. Parshamoni and S. Konar, CrystEngComm, 2014, 16, 4742 DOI: 10.1039/C3CE42451K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements