Predictive design of engineered multifunctional solid catalysts
Abstract
The ability to devise and design multifunctional active sites at the nanoscale, by drawing on the intricate ability of enzymes to evolve single-sites with distinctive catalytic function, has prompted complimentary and concordant developments in the field of catalyst design and in situ operando spectroscopy. Innovations in design-application approach have led to a more fundamental understanding of the nature of the active site and its mechanistic influence at a molecular level, that have enabled robust structure–property correlations to be established, which has facilitated the dextrous manipulation and predictive design of redox and solid-acid sites for industrially-significant, sustainable catalytic transformations.