Issue 20, 2014

Direct analysis of quaternary alkaloids by in situ reactive desorption corona beam ionization MS

Abstract

The direct detection of quaternary alkaloids by atmospheric pressure chemical ionization (APCI)-base ambient MS is difficult because of their poor volatility. In this study, a reactive protocol was developed for the in situ determination of quaternary alkaloids using desorption corona beam ionization (DCBI) mass spectrometry (MS). The model compounds of 8 quaternary alkaloids including sanguinarine, chelerythrine, cyclanoline, nitidine, coptisine, jatrorrhizine, berberine, palmatine and 2 tertiary alkaloids including protopine and allocryptopine were investigated in different states such as on a polytetrafluoroethylene (PTFE) plate, in raw herbal materials, and in silica gel. After various reactive reagents were studied, the mixture of saturated aqueous NaOH solution and CH3OH solvent (3 : 7, v/v) was selected as the optimized reactive reagent for the reactive DCBI-MS detection. All the target molecules can be detected with high sensitivity. On a PTFE plate the limits of detection were 0.0795, 0.1060, 0.4860, 0.9665, 0.8879, 0.3987, 0.5557, 0.4591, 0.0889, and 0.1929 mg L−1 for sanguinarine, chelerythrine, cyclanoline, nitidine, coptisine, jatrorrhizine, berberine, palmatine, protopine, and allocryptopine, respectively. The reactive protocol was also applied to the direct detection of raw herbal materials and thin layer chromatography successfully.

Graphical abstract: Direct analysis of quaternary alkaloids by in situ reactive desorption corona beam ionization MS

Article information

Article type
Paper
Submitted
20 Apr 2014
Accepted
21 Jul 2014
First published
21 Jul 2014

Analyst, 2014,139, 5185-5191

Author version available

Direct analysis of quaternary alkaloids by in situ reactive desorption corona beam ionization MS

Y. Hou, T. Wu, Y. Liu, H. Wang, Y. Chen, B. Chen and W. Sun, Analyst, 2014, 139, 5185 DOI: 10.1039/C4AN00704B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements