Issue 18, 2014

A piezoelectric-based immunosensor for high density lipoprotein particle measurement

Abstract

A piezoelectric-based immunosensor was developed for high density lipoprotein particle (HDL-P) measurement. Monoclonal anti-human apolipoprotein A1 antibody was used as a specific binding molecule for the major apolipoprotein of HDL-P. This sensing element was fabricated by immobilizing the anti-human apolipoprotein A1 on a 12 MHz AT-cut quartz crystal via a 3-mercaptopropionic acid (MPA) self-assembled monolayer. The frequency shift from the mass change of the antigen–antibody binding refers to the amount of HDL-P. The optimal antibody immobilization was performed to achieve the maximum potential of the antibody. The appropriate quantity and immobilization time of the antibody were 0.1 mg ml−1 and 90 minutes, respectively. The immobilized antibody in the HDL-P immunosensor accomplished perfect binding with HDL-P within 60 minutes. The dose–response curve for HDL-P showed a linear response from 0.21 to 2.50 mg protein per ml equivalent to 0.40 × 1010 to 3.65 × 1010 particles per μl without significant interference from other lipoproteins. The intra- and inter-assay imprecision (CV) were 7.8 and 18.5%, respectively. The analytical accuracy of this measurement was 96.29–96.31%. The HDL-P concentration obtained from the sensor revealed a 2.05 mg protein per ml with 0.26 mg protein per ml of expanded uncertainty at the 95% confidence level. This immunosensor gave an assay result which correlated with the homogeneous enzymatic colorimetric assay (R2 = 0.902).

Graphical abstract: A piezoelectric-based immunosensor for high density lipoprotein particle measurement

Article information

Article type
Paper
Submitted
03 Apr 2014
Accepted
16 Jun 2014
First published
16 Jun 2014

Analyst, 2014,139, 4586-4592

A piezoelectric-based immunosensor for high density lipoprotein particle measurement

S. Chunta, J. Suk-Anake, K. Chansiri and C. Promptmas, Analyst, 2014, 139, 4586 DOI: 10.1039/C4AN00601A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements