Issue 2, 2013

Design strategies for fluorescent biodegradable polymeric biomaterials

Abstract

The combination of biodegradable polymer and fluorescent imaging has resulted in an important area of polymeric biomaterials: biodegradable fluorescent polymers. Researchers have made significant efforts in developing versatile fluorescent biomaterials due to their promising applications in biological/biomedical labeling, tracking, monitoring, imaging, and diagnostics, especially in drug delivery, tissue engineering, and cancer imaging. Biodegradable fluorescent polymers can function not only as implant biomaterials but also as imaging probes. Currently, there are two major classes of biodegradable polymers, which are used as fluorescent materials. The first class is the combination of non-fluorescent biodegradable polymers and fluorescent agents such as organic dyes and quantum dots. Another class of polymers shows intrinsic photoluminescence as polymers by themselves carrying integral fluorescent chemical structures in or pendent to their polymer backbone, such as Green Fluorescent protein (GFP), and the recently developed biodegradable photoluminescent polymer (BPLP). Thus there is no need to conjugate or encapsulate additional fluorescent materials for the latter. In the present review, we will review the fluorescent biodegradable polymers with emphases on material fluorescence mechanism, design criteria for fluorescence, and their cutting-edge applications in biomedical engineering. We expect that this review will provide an insightful discussion on the fluorescent biomaterial design and lead to innovations for the next generation of fluorescent biomaterials and fluorescence-based biomedical technology.

Graphical abstract: Design strategies for fluorescent biodegradable polymeric biomaterials

Article information

Article type
Feature Article
Submitted
04 Sep 2012
Accepted
05 Oct 2012
First published
08 Oct 2012

J. Mater. Chem. B, 2013,1, 132-148

Design strategies for fluorescent biodegradable polymeric biomaterials

Y. Zhang and J. Yang, J. Mater. Chem. B, 2013, 1, 132 DOI: 10.1039/C2TB00071G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements