Issue 15, 2013

Stability, surface features, and atom leaching of palladium nanoparticles: toward prediction of catalytic functionality

Abstract

Surfactant-stabilized metal nanoparticles have shown promise as catalysts although specific surface features and their influence on catalytic performance have not been well understood. We quantify the thermodynamic stability, the facet composition of the surface, and distinct atom types that affect rates of atom leaching for a series of twenty near-spherical Pd nanoparticles of 1.8 to 3.1 nm size using computational models. Cohesive energies indicate higher stability of certain particles that feature an approximate 60/20/20 ratio of {111}, {100}, and {110} facets while less stable particles exhibit widely variable facet composition. Unique patterns of atom types on the surface cause apparent differences in binding energies and changes in reactivity. Estimates of the relative rate of atom leaching as a function of particle size were obtained by the summation of Boltzmann-weighted binding energies over all surface atoms. Computed leaching rates are in good qualitative correlation with the measured catalytic activity of peptide-stabilized Pd nanoparticles of the same shape and size in Stille coupling reactions. The agreement supports rate-controlling contributions by atom leaching in the presence of reactive substrates. The computational approach provides a pathway to estimate the catalytic activity of metal nanostructures of engineered shape and size, and possible further refinements are described.

Graphical abstract: Stability, surface features, and atom leaching of palladium nanoparticles: toward prediction of catalytic functionality

Supplementary files

Article information

Article type
Communication
Submitted
11 Jan 2013
Accepted
04 Mar 2013
First published
04 Mar 2013

Phys. Chem. Chem. Phys., 2013,15, 5488-5492

Stability, surface features, and atom leaching of palladium nanoparticles: toward prediction of catalytic functionality

H. Ramezani-Dakhel, P. A. Mirau, R. R. Naik, M. R. Knecht and H. Heinz, Phys. Chem. Chem. Phys., 2013, 15, 5488 DOI: 10.1039/C3CP00135K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements