ChemComm

COMMUNICATION

RSCPublishing

Cite this: *Chem. Commun.,* 2013, **49**, 1389

Received 21st November 2012, Accepted 20th December 2012

DOI: 10.1039/c2cc38382a

www.rsc.org/chemcomm

A new class of NO-donor pro-drugs triggered by γ -glutamyl transpeptidase with potential for reno-selective vasodilatation†

Qingzhi Zhang, *^a Agnieszka Kulczynska,^a David J. Webb,^b Ian L. Megson^{*c} and Nigel P. Botting₁*^a

This communication describes the synthesis of a new class of N-hydroxyguanidine (NHG) pro-drugs which release nitric oxide (NO), triggered by the action of γ -glutamyl transpeptidase (γ -GT), and have potential for the treatment of acute renal injury/failure (ARI/ARF).

Acute renal injury (AKI), or failure (ARF), is a common complication that affects millions of people worldwide, particularly in intensive care units, where it is associated with a mortality rate of between 50% and 80%.¹ There is no effective pharmaceutical therapy to date. One of the major causes of AKI is ischemiareperfusion injury, $2,3$ following aortic ring cross-clamping during by-pass surgery, which can lead to renal ischemia.⁴ Reperfusion of ischemic renal tissue causes the generation of reactive oxygen species which induce renal cell injury⁵ and promote impairment of renal perfusion at least in part via inactivation of the vasodilator, nitric oxide (NO) ⁶⁻⁸ Thus, a kidney selective vasodilator with antioxidant properties is attractive to maintain blood flow to offset AKI and scavenge the reactive oxygen species. Localisation of activity to the kidney would avoid a systemic reduction in blood pressure. Dopamine and fenoldopam, specific agonists of the dopamine-1 receptor, have been used clinically in an effort to reduce the risk of perioperative renal dysfunction, but the effectiveness of these agents is not clear. $9,10$ We hypothesised that an effective exogenous NO-donor, which selectively increases renal vasodilatation, would offer an alternative.

There are a wide range of NO-donor drugs in existence, 11 including conventional organic nitrates and nitrites, S-nitrothiols, NONOates and N-hydroxyguanidines (NHGs).¹²⁻¹⁶ The NHGs 1 are analogues of N^{ω} -hydroxy-L-arginine (NOHA), a biosynthetic intermediate involved in the generation of NO from L -arginine.¹¹ Several enzymatically activated NHG pro-drugs have been reported such as peptidylglycine α -amidating monooxygenase (PAM)-active O-carboxymethyl N-hydroxyguanidines¹⁷ and N - β -galactosidases-active (β - D -galactopyranos-1-yl)oxyguanidine.¹⁸ Our approach aimed to mask the NO generating N-OH group with a γ -glutamyl residue to facilitate activation by the enzyme, γ -glutamyl transpeptidase (γ -GT). Given that γ -GT is primarily expressed in the kidney (5–10 fold higher than in the liver and pancreas), 19 it was envisaged that this enzyme could be used to trigger reno-selective release of an NHG and subsequent in situ generation of NO (Scheme 1). A similar strategy has been described for reno-selective L-3,4-dihydroxyphenylalanine $(L-DOPA)$, the Glu-DOPA.^{20,21} **COMMUNICATION**
 **A new class of NO-donor pro-drugs triggered by

Telutamyl transpeptidase with potential for

stend.thrownloaded on Pro-selective vasodilatation t

stend.thrownloaded pro-selective vasodilatation t

(ingah**

> However, the direct coupling of NHGs with a γ -glutamyl residue was hampered by intramolecular cyclization and dehydration leading to a 1,2,4-oxadiazole ring; or alternatively lactamization and release of a pyroglutamic acid (Scheme 2, data not included).

> In an effort to prevent these modes of cyclization, we investigated the use of a bridge between the NHG and the γ -glutamyl group. Both γ -glutamyl itself and γ -aminobutanoyl $(GABA)^{22}$ were explored as linkers. Thus 2a and 2b became synthesis targets (Scheme 3) and they were prepared via appropriately protected dipeptide intermediates (ESI;† Scheme S1). Unfortunately 2a gradually decomposed presumably due to the carboxylic acid moieties promoting autodegradation.

Scheme 1 Approach to γ -GT triggered release of NHG 1 and the reno-selective release of nitric oxide.

^a University of St Andrews, EaStChem School of Chemistry and Centre for Biomolecular Sciences, North Haugh, St Andrews, Fife KY16 9ST, UK. E-mail: qz@st-andrews.ac.uk; Fax: +44 (0)1334 463808; Tel: +44 (0)1334 467274

 b Centre for Cardiovascular Science, The Queen's Medical Research Institute, The</sup>

University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK ϵ Free Radical Research Facility, Department of Diabetes and Cardiovascular Science, The University of The Highlands & Islands, Centre for Health Science,

Old Perth Road, Inverness, IV2 3JH, UK. E-mail: ian.megson@uhi.ac.uk; Fax: +44 (0)1463 711245; Tel: +44 (0)1463 279562

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/ c2cc38382a

[‡] N. P. Botting died on 4th June 2011.

Scheme 2 Cyclization of direct coupling of NHGs with γ -glutamyl residue(s)

Scheme 3 Design of Glu/Gaba linked γ -glutamyl NO-donor pro-drugs of NHG and hydroxamic acid.

On the other hand, 2b could be purified by preparative HPLC but was found to be resistant to γ -GT-mediated cleavage in vitro and was considered not to be a useful pro-drug. This prompted the preparation of 3 (Scheme 3), involving the conjugation of only one GABA-Glu dipeptide onto a hydroxamic acid, an alternative NO-donor.¹¹ Compound 3 too, unfortunately, was found to be resistant to γ -GT mediated deacylation, suggesting that the GABA-Glu peptide linker is not suitable for γ -GT cleavage in this setting.

Scheme 4 Design and synthesis of aminobenzyl linked γ -glutamyl NO-donor pro-drugs of NHG: (i) 4-aminobenzylalcohol, EEDQ, DCM, rt, 12 h, 85%; (ii) PBr₃, THF, 0 °C, 2 h, 87%; (iii) BocNHOH, NaH, THF, 0 °C, 4 h, 83%; (iv) CF₃CO₂H, DCM, 92%; (v) 9a R = Ph or 9b R = PhCH₂CH₂ or 9c R = furfuryl, Et₃N, DMAP, DCM, 38–53%; (vi) [Pd(PPh₃)₄], PhSiH₃, DCM, 37–89%.

 γ -Glutamyl anilines are known substrates for γ -GT²³ and presented an alternative linker option. The success of such an approach would involve a 1,6-elimination following the action of γ -GT on N- γ -glutamylaminobenzyloxy-guanidine 4a-c, as illustrated in Scheme 4. Similar spacers have been employed previously in anticancer pro-drug design.²⁴

In the event, the synthesis of 4a–c was successfully accomplished through a six-step reaction sequence (Scheme 4). Firstly, γ -glutamylation of 4-aminobenzylalcohol with Alloc-L-glutamic acid 1-allyl ester (Alloc-Glu-OAll) (ESI;† Scheme S1) gave benzyl alcohol 5. Conversion of the benzylalcohol moiety to the corresponding bromide 6 followed by nucleophilic displacement with BocNHOH generated aminooxide 7, and then treatment with $CF₃COOH-DCM$, gave the key intermediate 8 which was coupled with the required amino(alkyl/aryliminio) methanesulfonate 9a–c to generate 10a–c. Finally the All/Alloc groups were removed under neutral conditions with $([Pd(PPh₃)₄]/PhSiH₃)$ to give 4a-c. Communication Communicati

The same aminobenzyl linker was also used for the g-glutamylation of N-hydroxyformamidines (NHFs) (Scheme 5). N' -Hydroxy-N-(4-butyl-2-methylphenyl)formamidine²⁵ and N' -hydroxy- N -(3-chloro-4-morpholin-4-ylphenyl)formamide²⁶ have been documented as 20-hydroxyeicosatetraenoic acid (20-HETE) inhibitors. 20-HETE is a major metabolite of arachidonic acid and is a potent vasoconstrictor; localisation of an NHF would counter the effect of 20-HETE and induce a synergic vasodilation effect mediated by NO. Thus N'-hydroxyphenylethylformamidine 12 was prepared in this study and converted to pro-drug 14.

Pro-drugs $4a-c$ and 14 were rapidly cleaved by γ -GT and they were completely deacylated after 1 h, as judged by LC-MS. Fig. 1(a) and (b) illustrates the LCMS trace of 4b and the conversion of 4b to deacylated intermediate 15 $[M-Glu]^+$ by γ -GT. This was in clear contrast to the GABA-linked candidates 2b and 3, which proved to be resistant to the action of γ -GT. 1,6-Elimination and loss of the linker from 15 to generate the parent NHG 1b is significantly slower (trace amount of parent 1b was detected by selective ion monitoring at m/z 180) than the cleavage of the γ -glutamyl moiety. In preliminary experiments with animal tissue, LC-MS analysis revealed \sim 90% conversion of 4b (100 μ M) to 1b in a rat renal homogenate (37 °C; 45 min). In addition, 4b was found to induce substantial vasodilatation in rat isolated perfused kidney preparations (50% of maximum vasodilatation induced by \sim 40 μ M 4b). Details of the bioactivity of these pro-drugs will be reported elsewhere.

In summary, several candidate NO-donor pro-drugs have been prepared, designed for activation by γ -GT. The pro-drugs

Scheme 5 Synthesis of N-hydroxyformamidine and its glutamyl pro-drug: (i) Me₂NCH(OMe₂), reflux, 2 h, quantitative; (ii) NH₂OHHCl, MeOH, 63%; (iii) 8, THF, reflux, 29%; (iv) $[Pd(PPh₃)₄]$, PhSiH₃, DCM, rt, 6 h, 53%

Fig. 1 LCMS trace of 4b incubated in Krebs buffer at 37 °C for 1 h (a) without γ -GT and glutamyl acceptor Gly–gly, 4b is intact; (b) with γ -GT (100 mU mL⁻¹) and glutamyl acceptor Gly–gly (5 mM), 4b is deglutamylated to give the species 15.

comprise the parent NO-donor, a linker and a γ -glutamyl moiety. GABA-linked pro-drugs are not suitable substrates for γ -GT, but those linked by the aminobenzyl moiety proved to be good substrates for the enzyme. The γ -glutamyl group is cleaved rapidly, with a slower decomposition of the aminobenzyl linker. Improved design is now focussed on tuning the spacer to encourage a more rapid release of the parent NHG drug.

The authors are grateful to the Wellcome Trust (Catalyst Biomedica Development Award 063729/Z/01/Z) for financial support. Thanks go to Prof. David O'Hagan (University of St Andrews) for his input into manuscript preparation.

References

- 1 R. W. Schrier, W. Wang, B. Poole and A. Mitra, J. Clin. Invest., 2004, 114, 5–14.
- 2 J. V. Bonvebtre and J. M. Weinberg, J. Am. Soc. Nephrol., 2003, 14, 2199–2210.
- 3 T. A. Sutton, C. J. Fisher and B. A. Molitoris, Kidney Int., 2002, 62, 1539–1549.
- 4 G. Mariscalco, R. Lorusso, C. Dominici, A. Renzulli and A. Sala, Ann. Thorac. Surg., 2011, 92, 1539–1547.
- 5 P. A. Grace, Br. J. Surg., 1994, 81, 637–647.
- 6 M. L. Brocq, S. J. Leslie, P. Milliken and I. L. Megson, Antioxid. Redox Signaling, 2008, 10, 1631–1674.
- 7 A. MacKenzie and W. Martin, Br. J. Pharmacol., 1998, 124, 710–728.
- 8 M. Saran, C. Michel and W. Bors, Free Radical Res. Commun., 1990, 10, 221–226.
- 9 M. D. Denton, G. M. Chertow and H. R. Brady, Kidney Int., 1996, 49, 4–14.
- 10 T. Bove, G. Landoni, M. G. Calabrò, G. Aletti, G. Marino, E. Cerchierini, G. Crescenzi and A. Zangrillo, Circulation, 2005, 111, 3230–3235.
- 11 P. G. Wang, T. B. Cai and N. Taniguchi, Nitric Oxide Donors: For Pharmaceutical and Biological Applications, Wiley-VCH, 2005, ISBN, 3-527-31015-0.
- 12 A. Renodon-Cornière, S. Dijols, C. Perollier, D. Lefevre-Groboillot, J. L. Boucher, R. Attias, M. A. Sari, D. Stuehr and D. Mansuy, J. Med. Chem., 2002, 45, 944–954.
- 13 D. Mansuy and J. L. Boucher, Drug Metab. Rev., 2002, 34, 593–606.
- 14 M. Xian, X. P. Li, X. P. Tang, X. C. Chen, X. L. Zheng, J. J. Galligan, D. L. Kreulen and P. G. Wang, Bioorg. Med. Chem. Lett., 2001, 11, 2377–2380.
- 15 M. Xian, N. Fujiwara, T. Cai, Z. Wen, S. Kazuma, A. Janczuk, X. Tang, V. Telyatnikov, Y. Miyamoto, N. Taniguchi and P. G. Wang, Bioorg. Med. Chem., 2002, 10, 3049–3055.
- 16 Q. Jia, T. Cai, M. Huang, H. Li, M. Xian, T. L. Poulos and P. G. Wang, J. Med. Chem., 2003, 46, 2271–2274.
- 17 D. Schade, J. Kotthaus, H. Hungeling, J. Kotthaus and B. Clement, ChemMedChem, 2009, 4, 1595–1599.
- 18 D. Schade, J. Kotthaus, N. Klein, J. Kotthaus and B. Clement, Org. Biomol. Chem., 2011, 9, 5249–5259.
- 19 J. P. Ward, Ann. R. Coll. Surg. Engl., 1975, 57, 248–261, Academic Press.
- 20 S. Wilk, H. Mizoguchi and M. Orlowski, J. Pharmacol. Exp. Ther., 1978, 206, 227–232.
- 21 M. Barthelmebs, A. Caillette, J. D. Ehrhardt, J. Velly and J. L. Imbs, Kidney Int., 1990, 37, 1414–1422.
- 22 R. G. G. Leenders, K. A. A. Gerrits, R. Ruijtenbeek and H. W. Scheeren, Tetrahedron Lett., 1995, 36, 1701–1704.
- 23 A. Ménard, R. Castonguay, C. Lherbet, C. Rivard, Y. Roupioz and J. W. Keillor, Biochemistry, 2001, 40, 12678–12685.
- 24 B. E. Toki, C. G. Cerveny, A. F. Wahl and P. D. Senter, J. Org. Chem., 2002, 67, 1866–1872.
- 25 M. Sato, T. Ishii, Y. Kobayashi-Matsunaga, H. Amada, K. Taniguchi, N. Miyata and K. Kameo, Bioorg. Med. Chem. Lett., 2001, 11, 2993–2995.
- 26 N. Miyata, T. Seki, Y. Tanaka, T. Omura, K. Taniguchi, M. Doi, K. Bandou, S. Kametani, M. Sato, S. Okuyama, L. Cambj-Sapunar, D. R. Harder and R. J. Roman, J. Pharmacol. Exp. Ther., 2005, 314, 77–85.