Issue 39, 2013

Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo

Abstract

Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells in vitro has been reported, their effectiveness has rarely been established in vivo. Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity.

Graphical abstract: Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2013
Accepted
11 Jul 2013
First published
12 Jul 2013

J. Mater. Chem. B, 2013,1, 5288-5297

Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo

H. Xing, L. Tang, X. Yang, K. Hwang, W. Wang, Q. Yin, N. Y. Wong, L. W. Dobrucki, N. Yasui, J. A. Katzenellenbogen, W. G. Helferich, J. Cheng and Y. Lu, J. Mater. Chem. B, 2013, 1, 5288 DOI: 10.1039/C3TB20412J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements