Issue 36, 2013

Dimension-dependent phase transition and magnetic properties of VS2

Abstract

Among dozens of layered transition metal dichalcogenides (TMDs), VS2 has attracted particular interest due to its intrinsic magnetism and potential applications as a high-performance functional nanomaterial. The phase stability and electronic properties of the typical crystal structures of both monolayer and bulk VS2 are carefully investigated based on first-principle calculations. The results reveal that the relative stability between different phases is greatly affected by the thickness of the layers and the temperature. Below room temperature, both bulk and monolayer VS2 prefer to exhibit the hexagonal (H) structure instead of the trigonal (T) structure. Interestingly, at room temperature, although the H monolayer VS2 remains more stable than the T-VS2, the bulk T-VS2 becomes more stable than H-VS2. These results reveal that a phase transition between H and T will occur on changing either the thickness of the slab or the temperature. Furthermore, the different crystal structures (H and T) exhibit significantly distinct magnetism: the bulk T-VS2 has the lowest magnetism (0.31 μB), while the monolayer H-VS2 has the largest magnetism (about 1.00 μB) among the structures. Most importantly, our results reveal that the magnetism will increase sharply on the exfoliation of monolayer VS2 from the bulk at room temperature because of the phase transition from T to H. The present results provide an efficient way to modulate the magnetic moment through controlling the crystal structure and the thickness of the VS2 nanosheets.

Graphical abstract: Dimension-dependent phase transition and magnetic properties of VS2

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2013
Accepted
04 Jul 2013
First published
04 Jul 2013

J. Mater. Chem. A, 2013,1, 10821-10828

Dimension-dependent phase transition and magnetic properties of VS2

H. Zhang, L. Liu and W. Lau, J. Mater. Chem. A, 2013, 1, 10821 DOI: 10.1039/C3TA12098H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements