Issue 28, 2013

Crack propagation at the interface between soft adhesives and model surfaces studied with a sticky wedge test

Abstract

The motion of the triple line during the debonding of a soft viscoelastic adhesive from a rigid polymer surface has been investigated quantitatively. In order to make the debonding geometry simpler than the probe tack test, a new technique, called the sticky wedge test, has been developed where the probe is constituted by a horizontal cylinder instead of a flat punch. The crack propagates in the elongated contact area between the cylinder and the flat surface, thereby, allowing us to measure optically in situ the crack-tip velocity and the receding contact angle of the debonding adhesive. Two model pressure sensitive adhesives (PSA) based on poly(n-butyl acrylate-co-acrylic acid) with different molecular weights and branching levels and four polymer substrates (rubbery or glassy at room temperature) were used. Due to the soft and incompressible nature of the adhesive, the strain energy release rate for this test geometry has been estimated by the equations for the pure shear test geometry. The results show three main new insights: first, despite significant approximations, this novel approach holds promise to characterize more quantitatively the interfacial crack propagation between soft viscoelastic solids and hard surfaces and the relationship between the applied energy release rate G and the crack-tip velocity v has been reliably established for eight combinations of the model viscoelastic adhesives and surfaces. Second, at equivalent values of the thermodynamic work of adhesion, the adhesion energy of both the adhesives against the rubbery surface was much lower than that against the glassy polymers. Third, surprisingly, the measured receding contact angle of debonding was close to 90° for all adhesive/surface combinations used.

Graphical abstract: Crack propagation at the interface between soft adhesives and model surfaces studied with a sticky wedge test

Article information

Article type
Paper
Submitted
20 Dec 2012
Accepted
20 May 2013
First published
17 Jun 2013

Soft Matter, 2013,9, 6515-6524

Crack propagation at the interface between soft adhesives and model surfaces studied with a sticky wedge test

S. Bhuyan, F. Tanguy, D. Martina, A. Lindner, M. Ciccotti and C. Creton, Soft Matter, 2013, 9, 6515 DOI: 10.1039/C3SM27919G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements