Issue 21, 2013

Effect of geometry on the magnetic properties of CoFe2O4–PbTiO3 multiferroic composites

Abstract

In this study, X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), X-ray magnetic circular dichroism (XMCD) and element- and site-specific magnetic hysteresis (ESMH) are used to elucidate the effect of geometry (0-3- and 2-2-type) on the magnetic properties of CoFe2O4–PbTiO3 (CFO–PTO) multiferroic composites by comparison with those of the reference CFO and PTO powders. Magnetic Co ions in CFO have been confirmed to be located at both the tetrahedral (A)- and octahedral (B)-sites. CFO retains its mixed-spinel structure as verified by the EXAFS, XMCD and ESMH measurements. ESMH measurements further demonstrate that the magnetic moments of Co2+ and Fe3+/Fe2+ cations at both the A- and B-sites in the composites are smaller than those of the CFO powder. The reduction of the magnetic moments in the 2-2-type composite was larger than that in the 0-3-type composite. The reduction of the magnetic moments in the composites was attributable to the formation of anti-phase boundaries owing to the compressive strain in CFO, which is the largest strain in the 2-2-type composite. Based on the Ti L3,2-edge XMCD measurements of the CFO–PTO composites, no induced magnetic moment was observed at the Ti sites in the PTO matrix, excluding the possibility that the Ti ions in the PTO matrix affect the magnetic properties of these CFO–PTO composites.

Graphical abstract: Effect of geometry on the magnetic properties of CoFe2O4–PbTiO3 multiferroic composites

Article information

Article type
Paper
Submitted
08 Jan 2013
Accepted
01 Mar 2013
First published
04 Mar 2013

RSC Adv., 2013,3, 7884-7893

Effect of geometry on the magnetic properties of CoFe2O4–PbTiO3 multiferroic composites

B. Y. Wang, H. T. Wang, S. B. Singh, Y. C. Shao, Y. F. Wang, C. H. Chuang, P. H. Yeh, J. W. Chiou, C. W. Pao, H. M. Tsai, H. J. Lin, J. F. Lee, C. Y. Tsai, W. F. Hsieh, M.-H. Tsai and W. F. Pong, RSC Adv., 2013, 3, 7884 DOI: 10.1039/C3RA00104K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements