Issue 13, 2013

The biodistribution of gold nanoparticles designed for renal clearance

Abstract

Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate) shell can be established by X-ray imaging (owing to the X-ray absorption of the gold core) and by magnetic resonance imaging (MRI) since the DTDTPA shell was designed for the immobilization of paramagnetic gadolinium ions. However scintigraphy appears better suited for a biodistribution study owing to a great sensitivity. The successful immobilization of radioelements (99mTc, 111In) in the DTDTPA shell, instead of gadolinium ions, renders possible the follow up of Au@DTDTPA by scintigraphy which showed that Au@DTDTPA nanoparticles exhibit a safe behaviour after intravenous injection to healthy rats.

Graphical abstract: The biodistribution of gold nanoparticles designed for renal clearance

Supplementary files

Article information

Article type
Paper
Submitted
02 Jan 2013
Accepted
21 Apr 2013
First published
24 Apr 2013

Nanoscale, 2013,5, 5930-5939

The biodistribution of gold nanoparticles designed for renal clearance

C. Alric, I. Miladi, D. Kryza, J. Taleb, F. Lux, R. Bazzi, C. Billotey, M. Janier, P. Perriat, S. Roux and O. Tillement, Nanoscale, 2013, 5, 5930 DOI: 10.1039/C3NR00012E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements