Issue 6, 2013

Facile synthesis of carbon-coated hematitenanostructures for solar water splitting

Abstract

Carbon-coated hematite nanostructures for solar water splitting were prepared by a simple pyrolysis of ferrocene which showed a remarkable photocurrent of 2.1 mA cm−2 at 1.23 V vs. RHE, compared to a value of 0.5 mA cm−2 for hematite without the carbon layer. The carbon layer is a few nm thick covering the surface of hematite nanostructures. X-Ray photoelectron spectroscopy and X-ray absorption spectroscopy revealed that the electronic structure of hematite was significantly modified with the existence of oxygen vacancy, which was responsible for the remarkable photocurrent. The carbon layer plays an important role for the appearance of oxygen vacancy. The simple and cheap method could be scaled up easily which may pave the way for the practical application for efficient solar water splitting.

Graphical abstract: Facile synthesis of carbon-coated hematite nanostructures for solar water splitting

Supplementary files

Additions and corrections

Article information

Article type
Paper
Submitted
08 Jan 2013
Accepted
23 Apr 2013
First published
23 Apr 2013

Energy Environ. Sci., 2013,6, 1965-1970

Facile synthesis of carbon-coated hematite nanostructures for solar water splitting

J. Deng, X. Lv, J. Gao, A. Pu, M. Li, X. Sun and J. Zhong, Energy Environ. Sci., 2013, 6, 1965 DOI: 10.1039/C3EE00066D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements