Issue 39, 2013

The photochemistry of rhenium(i) tricarbonyl N-heterocyclic carbene complexes

Abstract

The photophysical and photochemical properties of the new tricarbonyl rhenium(I) complexes bound to N-heterocyclic carbene ligands (NHC), fac-[Re(CO)3(N^C)X] (N^C = 1-phenyl-3-(2-pyridyl)imidazole or 1-quinolinyl-3-(2-pyridyl)imidazole; X = Cl or Br), are reported. The photophysics of these complexes highlight phosphorescent emission from triplet metal-to-ligand (3MLCT) excited states, typical of tricarbonyl rhenium(I) complexes, with the pyridyl-bound species displaying a ten-fold shorter excited state lifetime. On the other hand, these pyridyl-bound species display solvent-dependent photochemical CO dissociation following what appear to be two different mechanisms, with a key step being the formation of cationic tricarbonyl solvato-complexes, being themselves photochemically active. The photochemical mechanisms are illustrated with a combination of NMR, IR, UV-Vis, emission and X-ray structural characterization techniques, clearly demonstrating that the presence of the NHC ligand is responsible for the previously unobserved photochemical behavior in other photoactive tricarbonyl rhenium(I) species. The complexes bound to the quinolinyl-NHC ligand (which possess a lower-energy 3MLCT) are photostable, suggesting that the photoreactive excited state is not any longer thermally accessible. The photochemistry of the pyridyl complexes was investigated in acetonitrile solutions and also in the presence of triethylphosphite, showing a competing and bifurcated photoreactivity promoted by the trans effect of both the NHC and phosphite ligands.

Graphical abstract: The photochemistry of rhenium(i) tricarbonyl N-heterocyclic carbene complexes

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2013
Accepted
12 Jul 2013
First published
12 Jul 2013

Dalton Trans., 2013,42, 14100-14114

The photochemistry of rhenium(I) tricarbonyl N-heterocyclic carbene complexes

J. G. Vaughan, B. L. Reid, S. Ramchandani, P. J. Wright, S. Muzzioli, B. W. Skelton, P. Raiteri, D. H. Brown, S. Stagni and M. Massi, Dalton Trans., 2013, 42, 14100 DOI: 10.1039/C3DT51614H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements