Issue 9, 2013

Role of Mn+ cations in the redox and oxygen transfer properties of BaMxAl12−xO19−δ (M = Mn, Fe, Co) nanomaterials for high temperature methane oxidation

Abstract

BaMxAl12−xO19−δ (M = Mn, Fe, Co, x = 1, 2) hexaaluminate nanomaterials were successfully prepared using the ARS (Activated Reactive Synthesis) process, a top-down and solvent free original synthesis route. The crystal sizes of the nanomaterials range at 24 ± 2 nm, which allows them to display high surface area (from 60 to 100 m2 g−1). The role of Mn+ cations in the redox and oxygen transfer properties of the nanomaterials was studied by H2-TPR and 18O/16O isotopic exchange, respectively. The nature of the transition metal as well as its content is observed to play a key role in the oxygen transfer properties. The catalytic properties of the nano-hexaaluminates, evaluated for methane oxidation, a reaction involving severe conditions (high temperature), resulted from multiple factors including oxygen transfer properties and transition metal valence and concentration on the surface.

Graphical abstract: Role of Mn+ cations in the redox and oxygen transfer properties of BaMxAl12−xO19−δ (M = Mn, Fe, Co) nanomaterials for high temperature methane oxidation

Article information

Article type
Paper
Submitted
22 Mar 2013
Accepted
10 May 2013
First published
13 May 2013

Catal. Sci. Technol., 2013,3, 2259-2269

Role of Mn+ cations in the redox and oxygen transfer properties of BaMxAl12−xO19−δ (M = Mn, Fe, Co) nanomaterials for high temperature methane oxidation

S. Laassiri, N. Bion, D. Duprez, H. Alamdari and S. Royer, Catal. Sci. Technol., 2013, 3, 2259 DOI: 10.1039/C3CY00192J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements