Issue 47, 2013

Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes

Abstract

The reaction pathways for the dehydrogenation of ethane, propane, and butane, over Pt are analyzed using density functional theory (DFT). Pt nanoparticles are represented by a tetrahedral Pt4 cluster. The objectives of this work were to establish which step is rate limiting and which one controls the selectivity for forming alkenes as opposed to causing further dehydrogenation of adsorbed alkenes to produce precursors responsible for catalyst deactivation due to coking. Further objectives of this work are to identify the role of adsorbed hydrogen, derived from H2 fed together with the alkane, on the reaction pathway, and the role of replacing one of the four Pt atoms by a Sn atom. A comparison of Gibbs free energies shows that in all cases the rate-determining step is cleavage of a C–H bond upon alkane adsorption. The selectivity to alkene formation versus precursors to coking is dictated by the relative magnitudes of the activation energies for alkene desorption and dehydrogenation of the adsorbed alkene. The presence of an adsorbed H atom on the cluster facilitates alkene desorption relative to dehydrogenation of the adsorbed alkene. Substitution of a Sn atom in the cluster to produce a Pt3Sn cluster leads to a downward shift of the potential energy surface for the reaction and causes an increase of the activity of the catalyst as suggested by recent experiments due to the lower net activation barrier for the rate limiting step. However, the introduction of Sn does not alter the relative activation barriers for gas-phase alkene formation versus loss of hydrogen from the adsorbed alkene, the process leading to the formation of coke precursors.

Graphical abstract: Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes

Article information

Article type
Paper
Submitted
06 Sep 2013
Accepted
21 Oct 2013
First published
28 Oct 2013

Phys. Chem. Chem. Phys., 2013,15, 20727-20734

Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes

A. W. Hauser, J. Gomes, M. Bajdich, M. Head-Gordon and A. T. Bell, Phys. Chem. Chem. Phys., 2013, 15, 20727 DOI: 10.1039/C3CP53796J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements