Issue 36, 2013

Propagation of nanopores during anodic etching of n-InP in KOH

Abstract

We propose a three-step model of electrochemical nanopore formation in n-InP in KOH that explains how crystallographically oriented etching can occur even though the rate-determining process (hole generation) occurs only at pore tips. The model shows that competition in kinetics between hole diffusion and electrochemical reaction determines the average diffusion distance of holes along the semiconductor surface and this, in turn, determines whether etching is crystallographic. If the kinetics of reaction are slow relative to diffusion, etching can occur at preferred crystallographic sites within a zone in the vicinity of the pore tip, leading to pore propagation in preferential directions. Symmetrical etching of three {111}A faces forming the pore tip causes it to propagate in the (remaining) 〈111〉A direction. As a pore etches, propagating atomic ledges can meet to form sites that can become new pore tips and this enables branching of pores along any of the 〈111〉A directions. The model explains the observed uniform width of pores and its variation with temperature, carrier concentration and electrolyte concentration. It also explains pore wall thickness, and deviations of pore propagation from the 〈111〉A directions. We believe that the model is generally applicable to electrochemical pore formation in III–V semiconductors.

Graphical abstract: Propagation of nanopores during anodic etching of n-InP in KOH

Article information

Article type
Paper
Submitted
28 May 2013
Accepted
17 Jul 2013
First published
31 Jul 2013

Phys. Chem. Chem. Phys., 2013,15, 15135-15145

Propagation of nanopores during anodic etching of n-InP in KOH

R. P. Lynch, N. Quill, C. O'Dwyer, S. Nakahara and D. N. Buckley, Phys. Chem. Chem. Phys., 2013, 15, 15135 DOI: 10.1039/C3CP52253A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements