Issue 23, 2013

Tandem cathode for proton exchange membrane fuel cells

Abstract

The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel tandem cathode design where the full oxygen reduction, involving four electron-transfer steps, is divided into formation (equilibrium potential 0.70 V) followed by reduction (equilibrium potential 1.76 V) of hydrogen peroxide. The two part reactions contain only two electron-transfer steps and one reaction intermediate each, and they occur on different catalyst surfaces. As a result they can be optimized independently and the fundamental problem associated with the four-electron catalysis is avoided. A combination of density functional theory calculations and published experimental data is used to identify potentially active and selective materials for both catalysts. Co-porphyrin is recommended for the first step, formation of hydrogen peroxide, and three different metal oxides – SrTiO3(100), CaTiO3(100) and WO3(100) – are suggested for the subsequent reduction step.

Graphical abstract: Tandem cathode for proton exchange membrane fuel cells

Article information

Article type
Paper
Submitted
08 Apr 2013
Accepted
15 Apr 2013
First published
22 Apr 2013

Phys. Chem. Chem. Phys., 2013,15, 9326-9334

Tandem cathode for proton exchange membrane fuel cells

S. Siahrostami, M. E. Björketun, P. Strasser, J. Greeley and J. Rossmeisl, Phys. Chem. Chem. Phys., 2013, 15, 9326 DOI: 10.1039/C3CP51479J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements