Issue 17, 2013

Application of the ‘gate effect’ of a molecularly imprinted polymer grafted on an electrode for the real-time sensing of heparin in blood

Abstract

Heparin is the most important anticoagulant drug used during surgeries and extracorporeal therapies. Although the blood levels of heparin should be monitored continuously during the procedure to ensure the safety of the patient, there is currently no technique for measuring heparin in real time. This study describes the use of a molecularly imprinted polymer (MIP) as a recognition element in the development of a heparin sensor for real-time monitoring. An indium tin oxide (ITO) electrode grafted with a heparin-specific MIP was used as a working electrode to perform cyclic voltammetry of ferrocyanide. The anodic current was found to be dependent on heparin concentration, probably due to the “gate effect”, which is a change in the accessibility of the MIP-modified electrode to ferrocyanide, triggered by specific interaction between MIP and heparin. The kinetics of heparin interaction with the MIP-grafted electrode was evaluated using potentiostatic chronoamperometry of ferrocyanide in an electrochemical flow cell. The response time to stepwise changes in heparin concentration between 0 and 0.04 units per mL was estimated at 20 s, which is remarkably shorter than that achieved using conventional methods for monitoring heparin. The MIP-grafted electrode demonstrated exceptional sensitivity and could detect heparin in whole blood samples (0–6 units per mL) diluted 100-fold with physiological saline containing ferrocyanide. Therefore, the MIP-grafted electrode is suitable for real-time monitoring of heparin in blood. Another advantage is that a very small volume of blood is needed, which is very important, especially when regular measurements are required.

Graphical abstract: Application of the ‘gate effect’ of a molecularly imprinted polymer grafted on an electrode for the real-time sensing of heparin in blood

Article information

Article type
Paper
Submitted
03 May 2013
Accepted
23 Jun 2013
First published
24 Jun 2013

Analyst, 2013,138, 5121-5128

Application of the ‘gate effect’ of a molecularly imprinted polymer grafted on an electrode for the real-time sensing of heparin in blood

Y. Yoshimi, K. Sato, M. Ohshima and E. Piletska, Analyst, 2013, 138, 5121 DOI: 10.1039/C3AN00909B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements