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Showcasing Raman detection of early stages of 
malaria infection from the Biophotonics Laboratory of 
Nicholas Smith at the Immunology Frontier Research 
Center, Osaka University, Japan.

Title: Raman spectroscopic analysis of malaria disease 

progression via blood and plasma samples

We show that Raman spectroscopy can discriminate between 

resonant heme and bio-crystallized hemozoin in the blood 

of malaria-infected patients. Both are present in blood and 

plasma following infection, and by multivariate analysis, their 

discrimination within blood samples allows early, quantitative and 

potentially automated detection of malaria, and its eff ects on the 

immune system.
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se and enlightening biomedicine:
Raman spectroscopy as a diagnostic tool

David I. Ellis,*a David P. Cowcher,a Lorna Ashton,a Steve O'Hagana

and Royston Goodacreab

The discovery of the Raman effect in 1928 not only aided fundamental understanding about the quantum

nature of light andmatter but also opened up a completely novel area of optics and spectroscopic research

that is accelerating at a greater rate during the last decade than at any time since its inception. This

introductory overview focuses on some of the most recent developments within this exciting field and

how this has enabled and enhanced disease diagnosis and biomedical applications. We highlight a small

number of stimulating high-impact studies in imaging, endoscopy, stem cell research, and other recent

developments such as spatially offset Raman scattering amongst others. We hope this stimulates further

interest in this already exciting field, by ‘illuminating’ some of the current research being undertaken by

the latest in a very long line of dedicated experimentalists interested in the properties and potential

beneficial applications of light.
Introduction

The properties of light have been of interest to experimentalists
for millennia. From the publication of Ibn al-Haytham's seven
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Chemistry 2013
volume treatise the ‘Book of Optics’ (Kitāb al-Manā _zir) in the
early 11th century (leading to him being regarded as the father
of modern optics1), through to one of the very rst publications
in a scientic journal, Isaac Newton's paper on the theory of the
properties of light2 itself followed some years later by his
famous book, Opticks, in 1704.3 Whilst separated by seven
centuries, these two polymaths and their respective bodies of
work shared similarities, perhaps the most important being
that both were the result of systematic and methodical experi-
mentation. In the century following the publication of Newton's
David Cowcher obtained an
undergraduate Masters degree
in Chemistry and Forensic
Science in 2009 from the
University of Manchester, which
included a year working as an
analytical chemist for Glax-
oSmithKline. He is currently
studying for a PhD with Roy
Goodacre at the Manchester
Institute of Biotechnology,
University of Manchester, on the
development of enhanced
Raman scattering methods for
biochemical analysis.
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Opticks, as early as the mid-1800s, the interaction of light
within tissue was being used by physicians to assist in disease
recognition.4

It was during a sea voyage from India to England in 1921 that
the brilliant Indian physicist C.V. Raman, another renowned
experimentalist, undertook some on-board experiments which
were later submitted to Nature in a letter called the ‘The Colour
of the Sea’.5 Unable to accept Lord Rayleigh's6 explanation that
the colour of the sea was just a reection of the colour of the
sky,7 Raman's experiments showed that the colour of the sea
was in fact a direct result of themolecular scattering of light and
independent of absorption or the reection of light from the
sky.8 This was very closely followed by another letter to Nature
Lorna Ashton studied for her BSc
with the Open University before
joining the University of Man-
chester where she obtained her
PhD in Biomolecular Sciences
and Raman Optical Activity. She
has since worked as a post
doctoral research associate spe-
cialising in Raman Spectroscopy
and two-dimensional correlation
analysis for the characterisation
of conformational transitions in
biomolecules. Lorna is currently

working as part of a BBSRC funded project for rapid evolution of
enzymes and synthetic microorganisms developing Raman spec-
troscopy as a high-throughput analytical technique for industrial
bioprocesses.

Steve O'Hagan gained BSc and
MSc degrees in Chemistry at the
University of Manchester. The
MSc research was to character-
ise ‘Molecular Beam Sources’
using mass spectrometry and
TOF kinetic energy measure-
ments; computer simulations
were also used. Steve gained a
PhD in Chemistry at the
University of Warwick; several
mass spectrometry and chemo-
metric techniques were

employed to analyse engine oils and additives. Aer several years
working for commercial laboratories, he joined the University of
Manchester as a Computer Officer, working with Doug Kell's and
Roy Goodacre's research groups. Interests include: genetic
programming; laboratory automation; analytical laboratory data
analysis; chemometrics; as well as scientic visualization.

3872 | Analyst, 2013, 138, 3871–3884
concerning the molecular scattering of light in liquids and
solids.9 These experiments opened up a deep interest in C.V.
Raman and a new eld of research on his return to Kolkata
(Calcutta) on the scattering of light,5 as well as the publication
of another article on the molecular diffraction and quantum
structure of light in the following year.10

Raman and collaborators such as K.S. Krishnan began a
series of seminal experiments concerning the scattering of light
in a large number of liquids, as well as theories about the
potential applications of their experiments, which culminated
in their discovery of the inelastic scattering effect named aer
Raman in 1928 on 28 February,11 and his award of the Nobel
Prize for Physics in 1930. This discovery was also independently
observed by Landsberg and Mandelstam later in 1928 (see Fig. 1
for a timeline of events in Raman spectroscopy). There was a
great deal of interest in the Raman effect and this not only aided
the fundamental understanding about the quantum nature of
light, and its interaction with matter at the molecular level, but
also opened up a completely novel area of optics and spectro-
scopic research that is, particularly in terms of biological and
biomedical applications,12,13 accelerating at a greater rate
during the last decade than at any time since its inception.

Whereas infrared (IR) spectroscopies measure the absorp-
tion of energy, Raman spectroscopy measures the exchange of
energy with electromagnetic (EM) radiation of a particular
wavelength, usually provided by a monochromatic light source
such as a laser in the visible to near-IR portion of the EM;
although it is also possible to conduct experiments in the near-
and deep-UV. From the exchange in EM energy a measurable
Raman shi in the wavelength of incident laser light is
observed, this is also referred to as the inelastic light scattering
effect.14–16 It is usually the Stokes shi which is measured, as
Roy Goodacre is a PhD graduate
from the University of Bristol
(UK) where he studied mass
spectrometry of microbial
systems. Aer a postdoc, Well-
come Trust fellowship and
lectureship in the University of
Wales, Aberystwyth, he is now
Professor of Biological Chem-
istry at the University of Man-
chester (UK). His group's main
areas of research (http://
www.biospec.net/) are broadly

within analytical biotechnology, metabolomics and systems
biology. His expertise involves many forms of Raman spectroscopy
(including deep UV resonance Raman and SERS), FT-IR spectros-
copy, and mass spectrometry, as well as advanced chemometrics,
machine learning and evolutionary computational methods. He is
Editor-in-Chief of the journal Metabolomics, on the Editorial
Advisory Boards of Analyst and Journal of Analytical and Applied
Pyrolysis, a founding director of the Metabolomics Society and a
director of the Metabolic Proling Forum.
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Fig. 1 A timeline of events and discoveries in the history of Raman spectroscopy, Nobel Prizes marked in red (photo of Sir C.V. Raman in the sculpture park of Nehru
Science Centre, Mumbai, India, by Prof. Paul O'Brien FRS, School of Chemistry, University of Manchester).
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this has a higher probability of occurring than anti-Stokes.17 It is
important to note that this shi is complementary to IR
absorption and a spectroscopic ‘ngerprint’13,17,18 of the same
sample can be analysed and constructed by both vibrational
spectroscopies. Whilst mid-IR spectroscopy is known to be
intensely sensitive to and a high absorber of water, this is
generally not the case with Raman spectroscopy as water is a
weak scatterer.13 For biomedical and routine clinical applica-
tions (and with low laser output power at the point of contact),
this allows for the direct collection in vivo of Raman spectra. The
Fig. 2 Results of bibliometric analysis of the number of publications (A) and
wos.mimas.ac.uk/) for the period 1992–2012, using the search terms (A) Raman
Raman endoscopy, (E) Raman imaging AND disease.

This journal is ª The Royal Society of Chemistry 2013
utility of Raman spectroscopy has been demonstrated for a
diverse and wide range of potential biological and biomedical
applications, such as bacterial identication,19,20 chemical
hazards and illicit substance detection,21,22 as well as food and
product authentication,23,24 with a great deal of interest and
research into its potential for disease diagnosis and use in
biomedical applications seen during the last decade (Fig. 2).

Some of the previously documented limitations of Raman
spectroscopy for biomedical applications have for example
included issues such as weak scattering signals, subsequently
citations (B/C/D/E) per year listed on ISI Thomson Web of Science� (http://
AND disease, (B) spatially offset Raman AND disease, (C) SERS AND disease, (D)

Analyst, 2013, 138, 3871–3884 | 3873
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Fig. 3 A figurative (as opposed to fibre-optic) bundle of some of the key terms and demonstrated capabilities of in vivo Raman imaging mentioned throughout this
article.
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long spectral acquisition times, uorescence from biological
samples, and interference from silica within bre-optics.
However, within this exciting and highly research active era of
biomedical Raman spectroscopy, and with the hard work and
application of experimentalists (in the long tradition of those
already mentioned above), these so-called limitations are being
overcome by groups of scientists and engineers around the globe
who are not content to remain within the bounds of current
knowledge, or the connes of commercially available optics for
that matter, and who are constantly pushing the eld forward.
This introductory overview focuses on some of the recent devel-
opments within this exciting eld, highlighting a small number
of high-impact studies in imaging, endoscopy, stem cell research,
and other recent developments such as spatially offset Raman
scattering (SORS), coherent anti-Stokes Raman scattering (CARS)
and stimulated Raman scattering (SRS), amongst others.
Imaging

Biomedical imaging is an extremely useful and important eld
which allows for the collection and processing of highly complex
biochemical and physiological data, and the creation, manipu-
lation, and in-depth analysis of three-dimensional colourised
images to aid molecular sensing,25 drug transport,26 character-
ization of cells27 and tissues,28 and, perhaps the ultimate goal, the
rapid diagnosis of disease (vide infra). Label-free optical imaging,
3874 | Analyst, 2013, 138, 3871–3884
particularly in vivo, would be highly advantageous as dyes or
uorescent labels, which are needed as contrast agents, can be
toxic or perturbative to the cell/tissue. Optical techniques have
also been said to have the potential to be complementary to
existing techniques such as magnetic resonance imaging (MRI),
and they offer superior sensitivity and high spatial resolution
(compared to MRI, see Fig. 3).29 Whilst mass spectrometry (MS)
has mass appeal for metabolomics for example30 and can be used
for chemical imaging of tissues and cells31,32 – including in 3D33 –

as well as being combined with vibrational spectroscopy,34

imaging MS is a destructive analysis and the practical spatial
resolution for MALDI-MS is 50–200 mm and for SIMS is 1 mm,
thus Raman spectroscopy has considerable opportunities to shed
light on disease.

In any review of biomedical imaging, and particularly one
focussed on Raman spectroscopy, it would be a heedless
omission not to include any one of a number of studies by the
Sunney Xie group. A major contributor to biomedical imaging,
based at Harvard University (http://bernstein.harvard.edu), this
group's body of work includes both coherent Raman scattering
techniques,35 comprising of coherent anti-Stokes Raman scat-
tering (CARS) microscopy36–38 and stimulated Raman scattering
(SRS) microscopy.39 Descriptions of these techniques can be
found in Table 1 and it should also be noted that the signal
from CARS is non-linearly proportional to species concentration
whilst the signal from SRS is linearly proportional.
This journal is ª The Royal Society of Chemistry 2013
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Table 1 Definition of some of the main approaches of Raman spectroscopy discussed in this review

Technique Acronym Short denition References

Surface enhanced
Raman spectroscopy

SERS Requires close proximity/adsorption onto a roughened metal surface, a
colloidal solution or a roughened electrode (usually Ag or Au). Enhancement
explained by two processes; an electromagnetic enhancement effect (thought
to dominate) and a charge transfer mechanism, known as chemical
enhancement. Has a uorescence quenching effect. Can tune to a specic
chromophore for additional resonance enhancement (known as SERRS).
Enhancements over normal Raman scattering of typically 103 to 106

19, 122, 136
and 137

Coherent anti-Stokes
Raman spectroscopy

CARS A multiphoton form of Raman spectroscopy based on a non-linear
conversion of two lasers into a coherent high intensity beam in the anti-
Stokes region. The emission is usually many orders of magnitude greater
than spontaneous Raman scattering. Useful for obtaining spectra of
uorescing samples. Nonresonant background can complicate spectral
assignment, limit sensitivity, and affect quantitative interpretation

27, 38, 41, 45
and 138

Stimulated Raman
scattering

SRS A multiphoton technique analogous to stimulated emission, where two
lasers coincide on a sample. The sample is excited by colinear and tightly
focused pump and Stokes beams. When the differences in known
frequencies match a molecular vibration in the sample, the Stokes beam
intensity increases and pump beam intensity decreases as a result of the
coherent excitation of molecular vibration. Unlike CARS, it does not exhibit
a nonresonant background and is a good technique for sensitive, high
spatial resolution 3D imaging

25, 26, 39, 61,
63 and 139

Spatially offset Raman
spectroscopy

SORS Raman spectra are collected from locations spatially separated from the
point of laser illumination on the sample surface. SORS allows for the
isolation of chemically rich spectral information from distinct
substructures or layers and through other barriers, not accessible via
spontaneous Raman. Typical wavelengths used for biological tissue are 785
or 830 nm. Ideal for detecting disease in cells and tissue underlying other
tissue types, such as bone through skin, cancer cells through muscle and
lipid tissue for example

25, 26, 39, 61,
63 and 139
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As briey mentioned above, the signal from spontaneous
Raman scattering is known to be weak, with potentially long
integration times, which impacts by signicantly reducing
imaging speed (an important factor as in vivo samples are in
constant motion at the micro scale). Although these nonlinear
methods were rst invented in the 1960s, coherent Raman
scattering techniques can be said to have very recently sur-
mounted any technical difficulties and imaging speed hurdles
by enhancing the Raman signal level by up to ve orders of
magnitude,39 and image collection speeds by three orders of
magnitude. Indeed, on the subject of speed, one of the more
memorable articles propelling CARS microscopy as a rapid
method over a decade ago (for the identication of bacterial
spores), had the unforgettable acronym FAST-CARS (femto-
second adaptive spectroscopic techniques for coherent anti-
Stokes Raman spectroscopy).40

More recent reports have highlighted some of the potential
limitations of CARS,29 which has been said to make quantitative
interpretation and applications other than lipid imaging41

unnecessarily challenging. These limitations can be particularly
noticeable in the ngerprint region where spectral signals are
said to be congested39 and separating out weak from strong
signals in this region is thus more problematic for CARS micro-
scopic imaging. That being said, CARS microscopy has been
This journal is ª The Royal Society of Chemistry 2013
successfully demonstrated as a biomedical imagingmethod for a
range of ex vivo biological samples such as brain structures,38

colon tissue,42 and arterial tissue27 for example, as well as in vivo
studies including sciatic nerve tissue43 and atherosclerotic plaque
deposits44 in animals, with a recent report also demonstrating the
use of CARS microscopy in skin imaging of humans in vivo.45

Recent articles within the last half decade have explored SRS
as an alternative imaging technology, which, unlike CARS, does
not exhibit a nonresonant background and so is inherently
more quantitative, though like other nonlinear multiphoton
techniques (including CARS), does allow for sensitive, high
spatial resolution 3D imaging.46 Whilst initial reports demon-
strated stimulated Raman scattering's advantages over CARS
(e.g. a lack of nonresonant background complications), it was
said to not be suitable for bioimaging due to sample photo-
damage from excessive laser power46 and had a limited spatial
and spectral resolution as well as a slower image acquisition
rate than CARS.47 These challenges were rapidly overcome by
the Xie group the following year using a multifaceted approach
which lowered peak rates by three orders of magnitude!
(resulting in no photodamage), optimised spectral resolution,
increased sensitivity by four orders of magnitude than the
previous year's report and surpassed the detection limit previ-
ously stated for CARS microscopy.46
Analyst, 2013, 138, 3871–3884 | 3875
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Table 2 A selection of Raman band frequency assignments of biological
interest140–144

Band frequency
(cm�1) Vibration mode Assignment

Protein secondary structure
930–950 N–Ca–C stretch Skeletal stretch/a-helix
1235–1259 N–H and C–H band Amide III/b-sheet
1260 N–H and C–H band Amide III/disordered
1300–1340 N–H and C–H band Amide III/a-helix
1650–1655 H-bonded C]O stretch Amide I/a-helix
1670–1680 H-bonded C]O stretch Amide I/b-sheet and

b-barrel

Amino acid residues
508–545 S–S stretch Trans and gauche

conformers
655 C–S stretch Gauche conformer
704 C–S stretch Trans conformers
835/857 H-bonding of indole

ring
Tyrosine Fermi
doublet

875–880 H-bonding of indole
ring

Tryptophan
orientation

1008/1034 Phenyl ring Phenylalanine
1551–1556 Indole ring Tryptophan
1605 Phenyl ring Phenylalanine
1615 Indole ring Tyrosine

RNA and DNA
813–816 O–P–O stretching A-form helix
914–925 C–O and C–C stretching Ribose–phosphate
1095 PO2 symmetric stretch B-DNA and Z-DNA

marker
1135, 1235, 1395 Ring stretch Uracil
1174, 1325, 1370 Ring stretch Guanine
1245, 1275 Ring stretch Cytosine
1256, 1514 Ring stretch Adenine
1671 C]O stretch Thymine

Sugars
1000–1200 C–O and C–C stretch b-D-Glucose, D-(+)

dextrose
1025, 1047, 1155 C–O stretch from

CH2OH of
carbohydrates

Glycogen

1267 NH2 rocking GlcNAc and GalNAc
1300–1500 CH2 and CH2OH

deformations
b-D-Glucose, D-(+)
dextrose

Lipids
891, 908 CH2 rocking Fatty acid chain length
1080 PO2-symmetric stretch Phospholipids
1259 PO2-asymmetric stretch Phospholipids
1296 C–C stretch Unbranched saturated

fatty acids
1660 C]C stretch Unsaturated lipid

bonds
2873, 2931, 2961 C–H stretch Acyl chains of lipids
2888, 2926 CH2 asymmetric stretch Saturated lipid bonds
3009 H–C]C stretch Unsaturated lipid

bonds
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Not content with these and other leaps forward, three bio-
imaging applications were then elegantly presented by Xie and
co-workers. The rst application monitored and imaged the
uptake of polyunsaturated omega-3 fatty acids by living human
cancer cells, specically eicosapentaenoic acid (EPA). Using the
Raman band at 3015 cm�1 (attributable to unsaturated fatty
acids), and in contrast, the Raman band at 2920 cm�1 whose
peak intensity is similar for saturated and unsaturated fatty
acids, they were able to use SRS to follow the uptake of EPA by
living cells, concluding that EPA is taken up by the cells and
more strongly enriched in lipid droplets compared to other
cellular organelles.46 The second application presented the
potential for tissue imaging without the requirement for
staining, highlighting the 3D sectioning capability and subcel-
lular resolution of SRS, using the CH2 stretching vibration at
2845 cm�1 (see Table 2 for Raman band frequencies of biolog-
ical interest).

This was demonstrated in a variety of mouse tissues; from
neuron bundles in corpus callosum (highlighting myelin
sheaths), thick brain tissue, and from depth proles of ear
tissue, in addition to comparative SRS and CARS images of
stratum corneum (visually illustrating how the nonresonant
background from CARS can complicate image interpretation).
Finally, this seminal series of experiments showed the use of
SRS to monitor drug delivery, namely deuterated dimethyl
sulfoxide (DMSO), a skin penetration enhancer and retinoic
acid (RA) used to treat a range of skin conditions and acute
promyelocytic leukemia. Drug delivery into fresh mouse skin
was monitored by tuning into the vibrations for DMSO at
670 cm�1 and RA at 1570 cm�1 (as well as lipids of subcuta-
neous fats at 2845 cm�1).46 This series of experiments
elegantly demonstrated the potential for SRS as a new
approach for studying pharmacokinetics in situ, sensitive label-
free imaging, and molecular sensing in 3D in living cells and
tissue.

Whilst the potential of SRS had been so ably demonstrated,
the series of experiments above had been undertaken ex vivo.
Well aware of the importance of in vivo optical imaging in
biomedicine, and perhaps acutely mindful of the challenges
required to achieve this goal, as well as the fact that SRS
imaging had not yet been accomplished in vivo (in animals or
humans), an article was published in 2010 demonstrating that
in vivo SRS was not only possible (both in mice and humans),
but that it could also be performed at video-rate speeds.29 This
high-speed imaging was achieved by modulating the intensity
of the Stokes beam at 20 MHz and the group building their
own all-analogue lock-in amplier with a response time of
�100 ns (whereas this was previously limited by commercially
available 100 ms lock-in ampliers).29 This new custom-built
system raster scanned across a sample with a line rate of 8 kHz
(100 ns per pixel at 512 � 512 pixels with up to 25 frames per
s), increasing imaging speed by three orders of magnitude. In
addition, to signicantly increase the collection of back-
scattered light from in vivo samples further in-house modi-
cations were undertaken, such as changing the geometry of the
photodetector and microscope objective. This involved exciting
light from the objective through an aperture in the detector
3876 | Analyst, 2013, 138, 3871–3884
placed between the microscope objective and the sample, and
specially designing a lter to block the modulated Stokes beam
whilst transmitting the pump beam.29
This journal is ª The Royal Society of Chemistry 2013
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The effectiveness of this new video-rate SRS imaging tech-
nique was then demonstrated through a series of experiments
such as skin imaging in livingmice. The CH3 stretching vibration
at 2950 cm�1 was shown to mainly highlight proteins, as well as
residual lipid structures and individual red blood cells in the
viable epidermis, whilst the water signal at 3250 cm�1 was
coincident with sebaceous glands in both positive and negative
contrast. In vivo imaging of drug penetration of trans-retinol was
demonstrated in living mouse skin, visualising with SRS imaging
and 3D depth projection that penetration of the topically applied
drug occurs along the hair sha. This pathway was not observed
in previous experiments with excised fresh tissue,46 which was
said to further highlight the importance of in vivo imaging, as it
can lead to insights into the transport mechanisms of small
molecules in living organisms.

Finally, a series of in vivo SRS imaging experiments were
performed on human skin of a volunteer's forearm showing cell
layers of the viable epidermis to a depth of 50 mm, and the
boundary (via observation of varying nuclear sizes) between the
viable epidermis and stratum corneum when tuned into the CH3

stretching vibration at 2950 cm�1. The penetration-enhancing
small molecule DMSO (which was deuterated) was applied to the
skin, and its accumulation in the hair sha and lack of complete
penetration into the hair itself was imaged using the C–D
stretching vibration at 2125 cm�1. With image acquisition times
of 150 ms and 37 ms respectively, these blur-free high-speed in
vivo vibrational imaging experiments demonstrated the diag-
nostic potential of this technology in humans.29
Stem cells

Stem cells,48 stem cell therapy,49,50 and stem cell engineering51

are extremely important and highly topical areas of scientic
research with huge potential benets for the treatment of a wide
range of diseases and biomedical applications. The ability to
identify the phenotypic purity of live cells is absolutely crucial
(and a noninvasive optical method would be highly benecial),
as excessive proliferation of unwanted phenotypes (i.e.,
uncontrolled differentiation) following transplantation could
result in undesirable consequences, such as tissue overgrowth
and tumour formation for example.52,53 One of the recent
studies by the Notingher group applied Raman spectroscopy to
determine if it could be used as a label-free, noninvasive
method to detect and image intrinsic chemical differences that
could be used as molecular markers among highly heteroge-
neous stem cells populations; specically, cardiomyocytes
(CMs) derived from human embryonic stem cells (hESCs).52

Using a custom-built instrument, Raman detection and
imaging of molecular markers specic to hESC-derived CMs was
carried out, along with retrospective phenotypic identication of
all cells via immunouorescence imaging integrated with the
Raman microscope. Multivariate statistical analysis of Raman
spectra and cross-validation methods were used to develop a
model (from 50 CMs and 40 non-CMs within the same hetero-
geneous populations) to determine the true accuracy of pheno-
typic identication of CMs, the sensitivity and specicity
parameters, and select discriminatory Raman bands. Raman
This journal is ª The Royal Society of Chemistry 2013
spectral images corresponding to the Raman bands identied by
both the multivariate model and immunostaining of the same
cells allowed for the accurate assignment of Raman molecular
markers. The conclusions drawn from the results were that
spectral differences were mainly attributable to glycogen and
myobrils, with glycogen being responsible for discrimination of
CMs (with a band assignment at 860 cm�1), and myobril
proteins providing a lesser contribution (with a band assignment
at 938 cm�1).52 This study demonstrated the potential of Raman
spectroscopy for noninvasive phenotypic identication of stem
cells, though the authors themselves stated that it was not yet
practical for medical applications due to their long spectral
acquisition times.

However, a later study by the same group on the same hESC-
derived cardiomyocytes reduced spectral acquisition times by a
hundredfold, from minutes per cell to 5 s per cell, without the
need for raster scanning. When incorporating high-powered
commercial lasers, this could be further reduced to cell sorting
speeds of approximately 10 cells per s.54 In addition, a recent study
by the same group has successfully applied Raman to identify,
image and quantify the differentiation status of live neural stem
cells in vitro, where this time the spectral differences were said to
be related to cytoplasmic RNA.55 A number of other interesting
studies involving Raman analysis of stem cell populations have
also appeared in the literature very recently56–59 and this area of
interest, not surprisingly, continues to grow and ourish.

As well as cellular differentiation, the location of specic
drugs inside cells is also of interest as this may allow the eluci-
dation of the pharmaceutical's site of action. A recent study
addressing this enabled mapping the site of action of the HIV
protease inhibitors indinavir and lopinavir in cervical carcinoma
cells expressing the E6 oncogene from human papilloma virus
(HPV).60 This study demonstrated that indinavir undergoes
enhanced nuclear accumulation in E6 expressing cells, indi-
cating this as the site of action for this compound against the
HPV. Further interesting studies showing the plethora of Raman
imaging applications include a report on stimulated Raman
photoacoustic imaging,61 surface enhanced Raman scattering
(SERS) imaging using nanotags in live mice, as a potential mul-
tiplexed imaging detection method for multiple biomarkers in
living subjects associated with a specic disease,62 quantitative
multiplex SRS imaging,63 noninvasive time-course imaging of
apoptotic cells,64 andmultivariate image reconstruction methods
for Raman hyperspectral datasets.65 For those specically inter-
ested in coherent nonlinear optical imaging, which includes
stimulated Raman scattering, the reader is directed to a recent
review by Min et al.,66 others include a review of CARS micros-
copy,37 as well as gold nanoparticles and imaging in medicine.67
Endoscopy

The clinical potential for in vivo Raman endoscopy has been the
subject of research for over a decade, since the rst published
report of in vivo Raman spectra of human gastrointestinal tissue
measured during routine clinical endoscopy in 2000.68 In the
same year work by the Stone group incorporated Raman spec-
troscopy and clinical endoscopy to discriminate between
Analyst, 2013, 138, 3871–3884 | 3877
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normal, dysplastic and cancerous laryngeal tissue.69 Nick
Stone's group, based in the UK (http://www.exeter.ac.uk/) have
played a major role in pioneering the eld of clinical optical
diagnostics with (in addition to other vibrational spectros-
copies) well received studies using Raman spectroscopy/
endoscopy to analyse a range of diseases/disorders such as
Barrett's oesophagus70 and bladder and prostate cancer.71 One
of the recent studies by the Stone group involved the evaluation
of the suitability of a custom-built bre-optic Raman probe for
the potential in vivo diagnosis of early onset oesophageal
neoplasia. Whilst this involved ex vivo sampling, the results
clearly demonstrated the potential for the rapid and accurate
differentiation between benign tissue, Barrett's oesophagus and
both dysplastic and malignant tissue.

The culmination of this study was a custom-built confocal
Raman probe constructed by the group. This novel probe had
been reported by the group previously,72 although by the time of
the latest study, the probe had undergone some modications
which had improved its performance for spectral acquisition
during oesophageal endoscopy. The 90 cm long, 2.7 mm
diameter bre-optic probe was designed to t into the instru-
ment channel of a standard clinical endoscope and to have
direct contact with oesophageal epithelial tissue. The optics had
been modied by incorporating a graded index lens at the tip
(and the output power regulated to 60 mW), so that a sampling
depth of 100 to 200 mm could be ensured. Collecting spectra
from this depth meant that signals from deeper tissue struc-
tures would not obscure those collected from mucosal abnor-
malities such as early neoplastic changes,73 and that these
abnormalities could be quickly classied in timescales suitable
to a clinical setting. The performance of the probe ex vivo had
been evaluated for translational use for in vivo sample collec-
tion, with low laser power at the probe tip and short spectral
acquisition times said to enable its routine use for oesophageal
endoscopy and paving the way for in vivo clinical trials.73 This
group have recently published a review on in vitro and in vivo
Raman spectroscopy as a potential routine tool for the rapid,
noninvasive, early diagnosis of lesions and preventing devel-
opment of cancer in the oesophagus.74

Another group who have made a signicant contribution to
the eld of Raman endoscopy in recent years is headed by
Zhiwei Huang and based at the Optical Imaging Laboratory in
Singapore (http://www.bioeng.nus.edu.sg/optbioimaging/
huang/). Several of these studies utilised image-guided Raman
endoscopy, which the group reported for the rst time in 2009.75

Whilst image-guided endoscopy is by no means novel,76,77 the
integration of image-guided techniques with Raman endoscopy
is relatively recent. The rst report on this technique involved
integrating Raman spectroscopy with trimodal imaging tech-
niques (white-light reectance, autouorescence and narrow-
band) and the development of a novel 1.8 mm Raman probe
which ltered out interference from uorescence as well as
interference from silica from within optical bres. This was
demonstrated via the rapid collection of Raman spectra (<1 s)
and the corresponding endoscopic images of different locations
of the upper gastrointestinal tract of a healthy volunteer in real-
time and in vivo.75
3878 | Analyst, 2013, 138, 3871–3884
Since then this group have published several articles using
image-guided Raman endoscopy, demonstrating its potential as
an in vivo real-time detection method for a variety of diagnostic
applications. These studies have included, perhaps not
surprisingly, the in vivo diagnosis of oesophageal cancer using
this technique in conjunction with biomolecular modelling.78

This involved collecting spectra from 75 oesophageal tissue
sites from 27 patients of normal tissue (squamous mucosa) and
malignant tumours. The cancerous tissue was said to show
distinct Raman signals mainly associated with cell prolifera-
tion, lipid reduction, abnormal nuclear activity and neo-
vasculation. To estimate the biochemical composition of
oesophageal tissue, biomolecular modelling was employed
using six basis reference spectra from actin, collagen type I,
DNA, histones, triolein and glycogen. This allowed for the
construction of a linear discriminant analysis (LDA) model with
a sensitivity of 97% and specicity of 95.2% for the in vivo
diagnosis of oesophageal cancer.78 These results have since
been said to be extremely promising, but that image-guided
Raman endoscopy is yet to be used to detect dysplasia or the
early onset of cancer.73

Nevertheless, the Huang group have previously demon-
strated the potential of Raman spectroscopy for the detection
of dysplasia, with a ball-lens bre-optic probe, in the high
wavenumber region (HW) (2800–3700 cm�1) for the in vivo
detection of cervical dysplasia (a HW Raman probe was rst
presented by Gerwin Puppels and co-workers for in vitro
measurements of brain tissue in 200579). The perceived main
advantages of HW Raman were said to be a signicant
reduction in uorescence and background signal from optical
bres, more intense Raman signals (compared to the nger-
print region), and the possibility of an unltered single bre
Raman probe design for in vivo clinical use.80 In addition to
this study, several more recent reports have continued to
investigate this area.81–83

The in vivo detection of epithelial neoplasia in the stomach
using image-guided Raman endoscopy has also been demon-
strated, and signicant differences between normal and
cancerous gastric tissue were reported.84 More recently, a study
has been published showing the development of an online
automated spectral diagnostics system integrated with image-
guided Raman endoscopy for real-time in vivo diagnosis during
endoscopic examination.85 This system was built on a database
of 2465 normal and 283 cancerous gastric tissue spectra
acquired from 305 patients, with the system employing a
variety of diagnostic algorithms. Other so-called in vivo real-
time applications recently reported have involved transnasal
image-guided Raman endoscopy of the larynx and naso-
pharynx, which the authors hoped would pave the way for
realizing early diagnosis and detection of cancers and pre-
cancers of the head and neck.86 All of these studies show
promise and many have similarities in terms of rapid spectral
acquisition times (absolutely crucial in in vivo studies), and
novel developments in optical engineering, but there remains
more to accomplish, such as the ability not only to discrimi-
nate cancer, but to classify and grade both cancerous and
precancerous cells and tissue.87,88
This journal is ª The Royal Society of Chemistry 2013
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Recent developments

In terms of noninvasive biomedical Raman other very exciting
developments are spatially offset Raman spectroscopy (SORS)89

as well as transmission Raman, both techniques directly
resulting from research involving depth proling using Raman
Kerr-gating methods.90 SORS was invented and developed in the
Central Laser Facility of the Rutherford Appleton Laboratory
(http://www.clf.rl.ac.uk) in 2005 by Pavel Matousek and readers
are directed to an excellent overview of this fast moving eld by
Matousek and Stone.91

The central difference in SORS is that Raman spectra are
collected from different locations, spatially separated (offset)
from the point of laser excitation on the sample (Fig. 4). As a
consequence of photon diffusion processes within tissue the
resultant Raman spectra contain different relative contribu-
tions from different depths within the sample and thus allows
for the highly accurate chemical analysis of subsurface objects
of interest.89 These spectra acquired from different spatial
offsets are processed to reveal pure Raman spectra of subcom-
ponents from separate depth locations within tissue.91 SORS
can be applied in a number of Raman collection and beam
delivery geometries including single point collection, ring, and
other pattern illumination.91 In respect to biomedical imaging
this approach is said to be particularly useful when congured
as inverse SORS, where the sample is illuminated by an
adjustable ring-shaped laser beam (generated by a conical
(axicon) lens) and the Raman light collected via bres in the
centre of the ring.92 The radius of this ring is said to dene the
spatial offset and as it is adjustable, this can be optimised to
suit both the scattering properties and dimensions of each
sample and covers a wider illumination zone on a sample
surface than conventional SORS.91 SORS is said to be effective at
tissue depths in excess of 500 mm, which is well beyond the
accessible range of conventional confocal Raman spectroscopy.
Applications can be as diverse and wide-ranging as noninvasive
detection of pharmaceuticals through packaging,93 detection of
Fig. 4 Simplified graphical representation of (A) spontaneous Raman compared
to (B) spatially offset Raman scattering, illustrating the spatial offset and deeper
subsurface probing in skin tissue. L ¼ laser light, R ¼ Raman light.

This journal is ª The Royal Society of Chemistry 2013
hidden explosives and drug precursors behind opaque plastics
and garments,21,94–96 as well as agricultural and food product
analysis.97

From the outset, Matousek and collaborators immediately
realised the diagnostic potential of SORS with its ability for
noninvasive subsurface probing of for example bone through
skin89 and dermatology studies.92 This foresight was quickly
realised with the rst SORS spectra of ex vivo bone collected in
200698,99 from animal and human cadavers, and in vivo SORS
demonstrated by Matousek during the same year.92 There have
been several studies since including accurate in vivo assessment
of bone composition using the carbonate (1070 cm�1) -to-
phosphate (958 cm�1) ratio through the skin of live mice,100

in vivo evaluation of bone gras,101,102 transcutaneous in vivo
monitoring of glucocorticoid induced osteoarthritis103 and
in vivo measurement and evaluation of subtle changes in bone
composition.104

A signicant body of pioneering work forwarding Raman
spectroscopy as a tool for breast cancer diagnosis was under-
taken in the George R. Harrison Spectroscopy Lab at MIT (http://
web.mit.edu/spectroscopy/) under the directorship of Michael
S. Feld. This included identifying chemical differences in
microcalcications from benign and malignant breast
lesions,105,106 demonstrating the real time capabilities of an
in vivo Raman system during femoral bypass and breast lump-
ectomy surgeries,107 and also involved testing of spectral diag-
nostic algorithms for breast cancer diagnosis.108 The results
from the Raman research on the chemical composition and
identication of the different types of microcalcications has
led directly to others investigating the potential of SORS as a
possible clinical adjunct to mammography, for the noninvasive
diagnosis of breast cancer. As the changing concentration of
carbonate substitution for phosphate ions in the calcium
hydroxide lattice in microcalcications may relate to the
process of tumour cell metastasis, and the ability to measure
the magnitude of this (as well as so tissue signals) by Raman,
could indicate the potential progression of this cancer.109

Research by Stone, Matousek, and collaborators, demon-
strated the proof-of-principle of SORS for potential in vivo breast
cancer diagnosis in a model system using three calcication
standards overlaid with various preparations of animal tissue
(i.e. chicken breast tissue, with and without skin). For this work
they utilised a continuous wave 827 nm laser with a spatial
offset for collection of 3 mm, which enabled the probing and
collection of Raman spectra from calcications through up to
10 mm of tissue.109 Previous results by this group using Kerr-
gated Raman techniques had achieved penetration depths of
1 mm in comparison.90 This SORS study demonstrated the
collection of high quality Raman spectra and biochemical
information measured through 8.7 mm of tissue, identifying
the difference between three calcication standards.

Subsequent experiments by the same group applied trans-
mission Raman spectroscopy in combination with chemo-
metrics in similar model systems collecting Raman calcication
signals from depths of 20 mm, this time through porcine tissue,
as a breast tissue ‘phantom’.110 This was said to reach the lower
range for clinically relevant breast tissue thicknesses from
Analyst, 2013, 138, 3871–3884 | 3879
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Fig. 5 SERS spectra of dipicolinic acid, a biomarker for Bacillus spores, measured
using citrate-reduced silver colloid and a portable 633 nm Raman spectrometer.
The concentration range 0–100 ppb in the sample volumes used is of equivalent
magnitude to the infective dose of inhalation anthrax. Highlighted are: (A) the
pyridine ring breathing vibration and structure of dipicolinate at 1006 cm�1, and
(B) the C–H stretching vibration and structure of glutaric acid at 2934 cm�1, which
is included as an internal standard to allow accurate quantification.
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mammographic screening (1.9 cm), with further work said to be
required to reach the top of this range (5 cm).91 Whilst these
studies utilised the carbonate-to-phosphate band ratio (similar
to the SORS bone studies above100), a more recent study showed
that the intense Raman phosphate band at 960 cm�1 broadens
and shis as carbonate concentration (from calcium hydroxy-
apatites) increases in the calcications.111 This study was said to
pave the way toward a new generation of noninvasive breast
cancer screening methods based around SORS and trans-
mission Raman spectroscopy.111 Some very recent studies by the
Mahadevan-Jansen group have investigated SORS for the real-
time, intraoperative assessment of breast cancer tumour
margins.112 This same group then developed and tested a SORS
probe with multiple source detector offset limits specic to this
type of analysis, and published results acquired from 35 freeze–
thaw breast cancer samples in vitro.113

Variants of SORS have also recently been used to augment
analysis and include in vivo transcutaneous glucose sensing in
rats114 and further demonstrated the accuracy and functionality
of this in a later study.115 These studies employed what they
term surface enhanced SORS (SESORS), rst published in
2010,116 and presented at the Federation of Analytical Chemistry
and Spectroscopy Societies (FACSS) meeting in the USA during
the same year. SESORS marry SERS techniques using nano-
particles and nanosurfaces with the subsurface probing of
SORS, with a further study exploring this technique's potential
for Raman imaging.117

On the subject of SERS, which has not been mentioned in
any great detail here, many studies have appeared in the liter-
ature during the last few years related to disease detection and
we would like to highlight just a modest selection of these. They
of course include the multiplexed imaging of SERS nanotags
in vivo already mentioned above,62 as well as other multiplexing
studies, such as multiplex single nucleotide polymorphism
(SNPs) genotyping coupled to SERS,118 multiplexed in vivo
cancer detection using SERS NIR nanotags, demonstrating the
excellent sensitivity, stability and tumour specicity of three
bioconjugated nanotags,119 recent reviews on the area of SERS
multiplexed detection for disease diagnostics,120 as well as SERS
cancer detection and imaging and the potential of SERS agents
for targeted drug delivery and photothermal therapy.121

Several SERS studies involving immunoassays, including
cancer detection,122 detection of a potential pancreatic cancer
marker in serum,123 and on-chip immunoassays using hollow
gold nanospheres.124 Fluorescent SERS gold co-functionalized
nanorod probes for in vivo imaging of lymph node mapping and
tumor targeting in mice,125 high sensitivity in vivo detection of
inammation using gold nanoclusters conjugated to mono-
clonal antibodies126 and the use of functionalised nanoparticles
and SERS for the detection of DNA relating to disease.127 With
the recent interest concerning the potential resurgence in
microbial disease, as well as bioterrorism, an article demon-
strating a portable quantitative SERS system for detection of
Bacillus spores at levels signicantly lower than those previously
reported for SERS has been published.128 Fig. 5 shows SERS
spectra of a biomarker from the spores of Bacillus, a species of
which Bacillus anthracis is the cause of the acute, and mostly
3880 | Analyst, 2013, 138, 3871–3884
lethal, disease anthrax. The detection limit of this dipicolinic
acid biomarker is estimated at 5 ppb (30 nM).128

In addition to those primary articles and reviews already
mentioned above, other recently published reviews and books
on an array of Raman-based topics which may be of interest
include those concerning in vivo and in vitro analysis,129 Raman
scattering in pathology,130 optical tumour margin identication
in the larynx,131 data-classication algorithms for spectral
analysis,132 recent advances in gold nanoparticle based assays
for detecting and identifying microbes,133 and emerging Raman
applications and techniques in biomedical and pharmaceutical
elds.134
Concluding remarks

We hope that whilst only an introductory overview to some of
the more recent work in this eld, the range and scope of the
studies shown here elegantly demonstrate the development and
exploitation of Raman spectroscopy as a medical diagnostic
tool. We believe this truly is an exciting eld, where those at the
forefront are propelling it forwards and are simply not content
to remain within the connes of current knowledge or
commercially available optics. These studies highlight the
necessary interdisciplinary nature of this eld, with inspira-
tional contributions from a range of analytical scientists and
technologists including clinicians, biologists, chemists, optical
engineers, as well as statisticians and chemometricians. These
multidisciplinary inputs and fresh approaches are invigorating
this eld, unlocking the doors to new insights,135 adding to
knowledge, and opening up new dimensions and avenues of
study, as well as potential clinical applications, for biomedical
Raman spectroscopy.
This journal is ª The Royal Society of Chemistry 2013
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