Issue 9, 2013

Construction of NIR and ratiometric fluorescent probe for Hg2+ based on a rhodamine-inspired dye platform

Abstract

A rhodamine-inspired fluorescence dye (2) bearing 7-diethylaminocoumarin fluorophore was designed as a platform for the construction of an NIR and ratiometric fluorescent probe. The ring-open form of 2 shows NIR absorption and emission; however, its ring-closed form displays the visible absorption and emission because an intact 7-diethylaminocoumarin fluorophore was involved in the structure, providing the basis for an NIR and ratiometric fluorescent platform based on the spirocyclization-induced fluorescence switching mechanism. With the platform, we developed a novel NIR and ratiometric fluorescent probe R1, a thiolactone of 2, for sensing Hg2+, an environmentally and biologically concerned species. R1 displays an emission peak with the maximum at 480 nm, which is the typical emission of 7-diethylaminocoumarin moiety; however, upon addition of Hg2+ ions, the emission intensity at 480 nm gradually decreased with the simultaneous appearance of a new NIR emission band centred at 695 nm. Thus, the Hg2+-promoted ratiometric fluorescence response can be realized. The high selectivity towards Hg2+ over various cations and the high stability in a wide pH range of 1–12 indicate its potential for applications in biological systems. The subsequent cell imaging experiment revealed that R1 is cell permeable, and could be employed for ratiometric fluorescence imaging of Hg2+ in living cells.

Graphical abstract: Construction of NIR and ratiometric fluorescent probe for Hg2+ based on a rhodamine-inspired dye platform

Supplementary files

Article information

Article type
Paper
Submitted
05 Oct 2012
Accepted
28 Feb 2013
First published
01 Mar 2013

Analyst, 2013,138, 2654-2660

Construction of NIR and ratiometric fluorescent probe for Hg2+ based on a rhodamine-inspired dye platform

J. Liu, Y. Sun, P. Wang, J. Zhang and W. Guo, Analyst, 2013, 138, 2654 DOI: 10.1039/C3AN00061C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements