Issue 12, 2012

The robust electrochemical detection of a Parkinson's disease marker in whole blood sera

Abstract

Protein aggregation, leading to amyloid deposition in the brain, is implicated in the pathology of a number of increasingly prevalent neurodegeneration states such as Parkinson's disease (PD), Alzheimer's disease and prion diseases. The body's protective response to the formation of such deposits is to generate specific autoimmune antibodies. Alpha-synuclein, a natively unfolded protein relatively abundant in the brain, is the main constituent of Lewy body amyloid dispositions in PD. Previous assays determining content of alpha-synuclein in bodily fluids have proven to be largely inconclusive. Here we have taken a novel approach in utilising alpha-synuclein modified electrodes to sample the autoantibodies generated as the body responds to changes in its homeostasis. We show that these electroanalytical assays not only robustly distinguish between disease state and control individuals but also map out disease progression with unprecedented sensitivity and clarity. The impedimetric electrode surfaces are highly specific, reusable, exhibit a linear range from 0.5 to 10 nM and a detection limit of 55 ± 3 pM. We believe electroanalyses such as these, possible with less than 10 microlitres of fluid and a total assay time of only a few minutes, to be of value for early diagnosis of PD and possibly other alpha-synucleinopathies, and for monitoring disease progression and effects of possible disease modifying interventions.

Graphical abstract: The robust electrochemical detection of a Parkinson's disease marker in whole blood sera

Article information

Article type
Edge Article
Submitted
13 Jul 2012
Accepted
10 Sep 2012
First published
11 Sep 2012

Chem. Sci., 2012,3, 3468-3473

The robust electrochemical detection of a Parkinson's disease marker in whole blood sera

T. Bryan, X. Luo, L. Forsgren, L. A. Morozova-Roche and J. J. Davis, Chem. Sci., 2012, 3, 3468 DOI: 10.1039/C2SC21221H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements