Issue 9, 2012

Hydrolysis study of fluoroorganic and cyano-based ionic liquid anions – consequences for operational safety and environmental stability

Abstract

The hydrolytic stability of ionic liquid anions is a key property with regard to their technical applicability and environmental stability. From a technical point of view hydrolytic processes may lead to reduced durability, diminished technical performance and reduced operational safety in that corrosive and/or toxic hydrolysis products are formed. On the other hand, susceptibility to hydrolytic processes is advantageous where environmental stability and persistency are concerned, since hydrolysis is the most important abiotic degradation pathway in the environment. We investigated the hydrolytic stability of the most common ionic liquid anions, dicyanimide [N(CN)2], tricyanmethanide [C(CN)3], tetracyanidoboranate [B(CN)4], bis(trifluoromethylsulphonyl)imide [(CF3SO2)2N], trifluorotris(pentafluoroethyl)phosphate [(C2F5)3PF3] and 1,1,2,2-tetrafluoroethanesulphonic acid [H(C2F4)SO3], as a function of pH (1, 7, 9 and 13) and temperature. The results show that there was no difference in hydrolytic stability as recorded for 1-ethyl-3-methylimidazolium (IM12) or for the alkali cations. All the anions were stable under neutral and slightly basic conditions (half-lives at 25 °C ⇒1 year). In strongly acidic and basic solutions, however, B(CN)4, (CF3SO2)2N, (C2F5)3PF3 and H(C2F4)SO3 were hydrolytically stable, whereas N(CN)2 and C(CN)3 were not. The kinetics of hydrolysis were recorded and Arrhenius plots were generated for the latter two anions. In addition, their hydrolysis pathways and the resulting products were identified via mass spectrometry. The cytotoxicity of hydrolysed IL solutions towards the mammalian cell line IPC-81 and the identified hydrolysis products (pure compounds) was investigated for a first estimate of their toxicological properties.

Graphical abstract: Hydrolysis study of fluoroorganic and cyano-based ionic liquid anions – consequences for operational safety and environmental stability

Article information

Article type
Paper
Submitted
01 Jun 2012
Accepted
24 Jul 2012
First published
25 Jul 2012

Green Chem., 2012,14, 2474-2483

Hydrolysis study of fluoroorganic and cyano-based ionic liquid anions – consequences for operational safety and environmental stability

S. Steudte, J. Neumann, U. Bottin-Weber, M. Diedenhofen, J. Arning, P. Stepnowski and S. Stolte, Green Chem., 2012, 14, 2474 DOI: 10.1039/C2GC35855G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements