Issue 38, 2012

Deformation mechanisms in 2D magnetic gels studied by computer simulations

Abstract

Magnetic gels, so-called ferrogels, consist of a polymer network, into which magnetic nanoparticles are embedded. The interesting properties of ferrogels originate from a complex interplay of the mechanical properties of the polymers with the magnetic interactions of the embedded nanoparticles. The ability to control the system by an external magnetic field may give rise to applications in medicine and engineering. In this paper, we propose and examine two microscopical simulation models for a 2D ferrogel which are suited to explain two distinct mechanisms of deformation in such a system. The first model focusses on deformation of the gel due to the dipole–dipole interaction between the magnetic nanoparticles. In an external magnetic field, a gel of this kind elongates in the direction parallel to the field and shrinks in the perpendicular direction. The second model deals with a distortion of the polymer matrix due to the transmission of torques from the magnetic nanoparticles to the polymer network. In this model, we observe an isotropic shrinking of the gel in an external magnetic field. As the observed deformations are very different in the two models, we conclude that the magnetoelastic behaviour of a magnetic gel strongly depends on the microscopical details of, both, the structure of the network and the coupling between the polymers and the magnetic nanoparticles. This may help to explain seemingly contradicting evidence from different experiments.

Graphical abstract: Deformation mechanisms in 2D magnetic gels studied by computer simulations

Article information

Article type
Paper
Submitted
11 May 2012
Accepted
18 Jul 2012
First published
16 Aug 2012

Soft Matter, 2012,8, 9923-9932

Deformation mechanisms in 2D magnetic gels studied by computer simulations

R. Weeber, S. Kantorovich and C. Holm, Soft Matter, 2012, 8, 9923 DOI: 10.1039/C2SM26097B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements