Issue 17, 2012

Phase behavior of rounded hard-squares

Abstract

Recently, Zhao et al. [Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 2684] reported the phase behavior of monolayers of polymeric Brownian squares platelets. As the density is increased, this system exhibits the formation of two crystal structures not expected for particles with square symmetry, namely, a hexagonal rotator crystal phase and a rhombic crystal phase. Molecular simulations by Wojciechowski and Frenkel [Comp. Met. Sci. Technol., 2004 10, 235] had predicted instead the formation of tetratic and square crystal phases. In this work, we report Monte Carlo simulation results of rounded hard squares of varying degrees of roundness, hence interpolating between disks and perfect squares. Our simulations show that the roundness of the particles gives rise to the phases observed by Zhao et al. and further provide a roadmap for the regions of stability of different ordered phases as a function of particle roundness. In particular, our results suggest that depending on the degree of roundness, the isotropic phase would transition either into a hexagonal rotator phase through a hexatic-like intermediate, into a square phase through a tetratic-like intermediate, or (in a narrow range of crossover values of roundness) into a novel polycrystalline phase containing domains with square order in coexistence with clusters of particles having a weak hexagonal order.

Graphical abstract: Phase behavior of rounded hard-squares

Supplementary files

Article information

Article type
Paper
Submitted
20 Dec 2011
Accepted
06 Feb 2012
First published
08 Mar 2012

Soft Matter, 2012,8, 4675-4681

Phase behavior of rounded hard-squares

C. Avendaño and F. A. Escobedo, Soft Matter, 2012, 8, 4675 DOI: 10.1039/C2SM07428A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements