Issue 15, 2012

Direct comparison of the rheology of model hard and soft particle glasses

Abstract

The effects of particle softness and the role of the outer shell mechanics on the linear viscoelasticity and yielding behaviour of colloidal glasses are critically assessed using three different model colloidal particles: (i) sterically stabilized PMMA particles with model hard sphere interactions, (ii) core–shell microgels with a deformable PNIPAM outer shell and (iii) ultra-soft star-like micelles with inter-penetrable multi-arms. The volume fraction dependence of the elastic modulus and the yield stress reflects the softness of the effective inter-particle potential. The yield strain exhibits distinct non-monotonic volume fraction dependence for hard spheres below close packing whereas for both soft particles it increases above close packing due to particle softness. Stress overshoots in start-up shear show a common increase with shear rate in all systems. However, the stress overshoots are significantly stronger in star-like micelles due to transient arm entanglements. In relation with that similar stress peaks are detected within the period of the large amplitude oscillatory shear only in star-like micelles. Finally, we discuss the scaling exponents for the G′ and G′′ decrease at large oscillatory strain amplitudes and their relation with steady shear stress.

Graphical abstract: Direct comparison of the rheology of model hard and soft particle glasses

Article information

Article type
Paper
Submitted
11 Nov 2011
Accepted
31 Jan 2012
First published
14 Mar 2012

Soft Matter, 2012,8, 4271-4284

Direct comparison of the rheology of model hard and soft particle glasses

N. Koumakis, A. Pamvouxoglou, A. S. Poulos and G. Petekidis, Soft Matter, 2012, 8, 4271 DOI: 10.1039/C2SM07113D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements