Issue 10, 2012

DNA encapsulation via nanotemplates from cationic block copolymer micelles

Abstract

We report on a method for the encapsulation of DNA into polymeric nanocapsules. The encapsulation procedure involves three steps: formation of polyplexes between DNA and cationic polymeric micelles; coating of polyplexes with a cross-linked shell; dissociation of polyplexes. In the first step copolymer micelles were obtained by self-assembly of an amphiphilic polystyrene-b-poly(quaternized 2-vinylpyridine) (PS-b-PQ2VP) block copolymer in aqueous solution. Nanosized polyplexes (Dh = 190 nm and ζ = −21 mV) were formed upon the addition of DNA to the micellar solution at a phosphate/amine group ratio of 3 : 1. In the second step the complexes were coated with a cross-linked shell formed by seeded radical polymerization of N-isopropylacrylamide which resulted in a slight shift of ζ potential of the particles to a less negative value. The dissociation of polyplexes and removal of PS-b-PQ2VP were achieved by addition of salt and solvent exchange. Following rehydration viadialysis against water, polymeric nanocapsules with entrapped DNA were obtained. The nanocapsules were visualized by transmission electron microscopy; they exhibited smaller dimensions compared to the initial polyplexes and ζ potential very close to that of the pristine DNA.

Graphical abstract: DNA encapsulation via nanotemplates from cationic block copolymer micelles

Article information

Article type
Paper
Submitted
24 Oct 2011
Accepted
05 Jan 2012
First published
30 Jan 2012

Soft Matter, 2012,8, 2884-2889

DNA encapsulation via nanotemplates from cationic block copolymer micelles

E. Haladjova, S. Rangelov, Ch. B. Tsvetanov and S. Pispas, Soft Matter, 2012, 8, 2884 DOI: 10.1039/C2SM07029D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements