Issue 34, 2012

Hyper-branched sensing polymer directly constructed on a resonant micro-cantilever for the detection of trace chemical vapor

Abstract

A hyper-branched polymer is layer-by-layer self-assembled on a resonant micro-cantilever and, then, functionalized with sensing-terminals for the specific detection of the trace chemical vapor of dimethyl methylphosphonate (DMMP, a typical simulant for nerve agents). The hyper-branched polymer is directly constructed on the SiO2 surface of the cantilever via an A2 + B4 layer-by-layer route, where A2 and B4 are complementary interacting groups which undergo coupled linking. After modification with 4-(2-(4-(allyloxy)phenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl)phenol (APHFPP) groups specific to DMMP, the high specific-surface-area hyper-branched polymer provides very dense sensing sites to adsorb a great number of DMMP molecules for micro-gravimetric detection. Moreover, the sensing polymer possesses a “more branches but fewer roots” configuration on the cantilever surface to depress the cross-talk effect caused by adsorption induced cantilever spring-stiffening. Experimental results indicate that, self-assembled with the hyper-branched sensing polymer, the resonant cantilevers exhibit rapid and reproducible detection of trace DMMP (with the detection limit lower than 7.2 ppb) and effectively depressed parasitic frequency-shift from the cantilever spring stiffening effect. In addition, the sensor features satisfactory selectivity in the presence of water and organic solvents. When an alternative sensing-group of 2-allylhexafluoroisopropanol (AHFIP) is modified on the hyper-branched architecture, the cantilever becomes specifically sensitive to trace explosive vapor. Therefore, the developed technique for the functionalization of hyper-branched polymer directly grown on a cantilever provides a widely usable micro/nano sensing-platform for the detection of trace chemical vapors.

Graphical abstract: Hyper-branched sensing polymer directly constructed on a resonant micro-cantilever for the detection of trace chemical vapor

Article information

Article type
Paper
Submitted
20 May 2012
Accepted
11 Jul 2012
First published
12 Jul 2012

J. Mater. Chem., 2012,22, 18004-18009

Hyper-branched sensing polymer directly constructed on a resonant micro-cantilever for the detection of trace chemical vapor

Y. Liu, P. Xu, H. Yu, G. Zuo, Z. Cheng, D.-W. Lee and X. Li, J. Mater. Chem., 2012, 22, 18004 DOI: 10.1039/C2JM33202G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements