Issue 21, 2012

Hybrid organic/inorganic semiconductor nanostructures with highly efficient energy transfer

Abstract

Using electro-static assembly of complementary organic (cyanine dye) and inorganic (quantum dots) building blocks we report on formation of an advanced nanohybrid system with highly efficient nonradiative energy transfer properties. In contrast to previous approaches, formation of J-aggregates in cyanine dye solution was triggered by direct injection of as-synthesized colloidal CdTe quantum dots without any additional surface treatment. The optical properties of formed hybrid aggregates have been investigated by absorption and photoluminescence spectroscopy and fluorescence lifetime imaging microscopy. A quantum dot/J-aggregate system shows the enhanced absorption in visible and ultraviolet parts of the spectrum typical of quantum dots, along with the narrow emission linewidth and fast recombination rate characteristic of the J-band emitters. These quantum dot/J-aggregate hybrid systems may have applications in light harvesting systems with the extended spectral absorption as well as optical sensors and optoelectronic devices.

Graphical abstract: Hybrid organic/inorganic semiconductor nanostructures with highly efficient energy transfer

Article information

Article type
Paper
Submitted
14 Feb 2012
Accepted
21 Mar 2012
First published
22 Mar 2012

J. Mater. Chem., 2012,22, 10816-10820

Hybrid organic/inorganic semiconductor nanostructures with highly efficient energy transfer

D. Savateeva, D. Melnikau, V. Lesnyak, N. Gaponik and Y. P. Rakovich, J. Mater. Chem., 2012, 22, 10816 DOI: 10.1039/C2JM30917C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements